• Title/Summary/Keyword: 변수분석

Search Result 17,171, Processing Time 0.048 seconds

Predicting the Pre-Harvest Sprouting Rate in Rice Using Machine Learning (기계학습을 이용한 벼 수발아율 예측)

  • Ban, Ho-Young;Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myong-Goo;Lee, Chung-Keun;Lee, Ji-U;Lee, Chae Young;Yun, Yeo-Tae;Han, Chae Min;Shin, Seo Ho;Lee, Seong-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.239-249
    • /
    • 2020
  • Rice flour varieties have been developed to replace wheat, and consumption of rice flour has been encouraged. damage related to pre-harvest sprouting was occurring due to a weather disaster during the ripening period. Thus, it is necessary to develop pre-harvest sprouting rate prediction system to minimize damage for pre-harvest sprouting. Rice cultivation experiments from 20 17 to 20 19 were conducted with three rice flour varieties at six regions in Gangwon-do, Chungcheongbuk-do, and Gyeongsangbuk-do. Survey components were the heading date and pre-harvest sprouting at the harvest date. The weather data were collected daily mean temperature, relative humidity, and rainfall using Automated Synoptic Observing System (ASOS) with the same region name. Gradient Boosting Machine (GBM) which is a machine learning model, was used to predict the pre-harvest sprouting rate, and the training input variables were mean temperature, relative humidity, and total rainfall. Also, the experiment for the period from days after the heading date (DAH) to the subsequent period (DA2H) was conducted to establish the period related to pre-harvest sprouting. The data were divided into training-set and vali-set for calibration of period related to pre-harvest sprouting, and test-set for validation. The result for training-set and vali-set showed the highest score for a period of 22 DAH and 24 DA2H. The result for test-set tended to overpredict pre-harvest sprouting rate on a section smaller than 3.0 %. However, the result showed a high prediction performance (R2=0.76). Therefore, it is expected that the pre-harvest sprouting rate could be able to easily predict with weather components for a specific period using machine learning.

Effect of Strategic Orientation on Information Technology Competency and Corporate Performance in Small and Medium-Sized Enterprises(SMEs) (중소기업의 전략적 지향성이 정보기술역량과 기업성과에 미치는 영향)

  • Yang, Hee-Jong;Jang, Gil-Sang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.693-704
    • /
    • 2021
  • This study empirically verified the effect of strategic orientation on information technology(IT) competency and corporate performance for organizational members engaged in small and medium-sized enterprises (SMEs). In the research model proposed in this study, strategic orientation affects corporate performance, and IT competency is used as a mediating variable in this process. For this study, a survey was conducted on organizational members working in small and medium-sized manufacturers located in Ulsan Metropolitan City. A total of 320 questionnaires were distributed, and 277 copies were used in this study. The collected data were statistically analyzed using SPSS 24.0. The research results are as follows: First, customer orientation, market orientation, and technology orientation of strategic orientation were found to have a positive (+) effect on both information technology knowledge and information technology operation of IT competency. And it was found that both customer orientation and technology orientation of strategic orientation only affects the information technology infrastructure of IT competency. Second, it was found that customer orientation and technology orientation of strategic orientation had a positive (+) effect on corporate performance, but market orientation had no effect on corporate performance. Third, it was found that information technology knowledge, information technology operation, and information technology infrastructure of IT competency had a positive (+) effect on corporate performance. Fourth, as a result of examining the mediating effect of information technology competency between strategic orientation and corporate performance, information technology knowledge, information technology operation, and information technology infrastructure of IT capability were found to have a partial mediating effect between customer orientation and technology orientation of strategic orientation and corporate performance. These research results suggest that in today's fourth industrial revolution era, customer-oriented and technology-oriented management strategies should be established to improve the competitive advantage and performance of small and medium-sized enterprises(SMEs) in the supply chain with large enterprises, and at the same time information technology capabilities such as information technology knowledge, information technology operation, and information technology infrastructure should be strengthened.

A Study on the Development and usefulness of the x/y Plane and z Axis Resolution Phantom for MDCT Detector (MDCT 검출기의 x/y plane과 z축 분해능 팬텀 개발 및 유용성에 관한 연구)

  • Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2022
  • The aim of this study is to establish a new QC method that can simultaneously evaluate the resolution of the x/y plane and the z-axis by producing a phantom that can reflect exposure and reconstruction parameter of MDCT system. It was used with Aquilion ONE(Cannon Medical System, Otawara, Japan), and the examination was scanned using of 120 kV, 260 mA, and the D-FOV of 300 mm2. It produced new SSP phantom modules in which two aluminum plates inclined at 45° to a vertical axis and a transverse axis to evaluate high contrast resolution of x/y plane and z axis. And it changed factors such as the algorithm, distance from gantry iso-center. All images were reconstructed in five steps from 0.6 mm to 10.0 mm slice thickness to measure resolution of x/y plane and z-axis. The image data measured FWHM and FWTM using Profile tool of Aquarius iNtusion Edition ver. 4.4.13 P6 software(Terarecon, California, USA), and analysed SPQI and signal intensity by ImageJ program(v1.53n, National Institutes of Health, USA). It decreased by 4.09~11.99%, 4.12~35.52%, and 4.70~37.64% in slice thickness of 2.5 mm, 5.0 mm, and 10.0 mm for evaluating the high contrast resolution of x/y plane according to distance from gantry iso-center. Therefore, the high contrast resolution of the x/y plane decreased when the distance from the iso-center increased or the slice thickness increased. Additionally, the slice thicknesses of 2.5 mm, 5.0 mm, and 10.0 mm with a high algorithm increased 74.83, 15.18 and 81.25%. The FWHM was almost constant on the measured SSP graph for evaluating the accuracy of slice thickness which represents the resolution of x/y plane and z-axis, but it was measured to be higher than the nominal slice thickness set by user. The FWHM and FWTM of z-axis with axial scan mode tended to increase significantly as the distance increased from gantry iso-center than the helical mode. Particularly, the thinner slice thickness that increased error range compare with the nominal slice thickness. The SPQI increased with thick slice thickness, and that was closer to 90% in the helical scan than the axial scan. In conclusion, by producing a phantom suitable for MDCT detectors and capable of quantitative resolution evaluation, it can be used as a specific method in the management of research quality and management of outdated equipment. Thus, it is expected to contribute greatly to the discrimination of lesions in the field of CT imaging.

Case Analysis and Prospect of K-POP Performance Art's Overseas Entry by Joint Venture (K-POP 공연 예술의 합작 투자에 의한 해외 진출 사례 분석 및 전망)

  • Ko, Kyu-Dae
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.191-200
    • /
    • 2020
  • Companies are seeking to maximize profits through exports and imports in the ultra-fast, ultra-high-speed modern society. It is only possible to sustain its survival if it targets the global market, not based on any specific region. The K-POP group is also targeting overseas markets in a manner similar to the various global strategies used when companies make inroads into foreign markets, including exports, contracts and direct investment. The K-POP group is engaged in various forms of activities, ranging from simple forms of performance (export) that are visited and staged by an invitation from a certain foreign country to series performances (license) by an invitation from a local promoter and tour performances using its capabilities. The K-POP group is seeking to go beyond the art of single-stage performances and make a systematic plan and make inroads into foreign countries in the form of direct investment suitable for each foreign country. The K-POP group made inroads into overseas markets in the form of simple performances from the late 1990s to 2005, when 'Korean Wave' was first introduced. Group H.O.T., etc. are typical examples. Since then, it has sought to enter overseas markets in the form of franchises by accepting overseas members by 2018, starting with Super Junior in 2005. Since then, the K-POP group in the form of joint investment attempted as group IZ*ONE in 2018 appeared, and a voice story came out in September 2018 when South Korea's JYP Entertainment and Tencent of China joined forces. Unlike K-POP Group, which has entered foreign markets with a global strategy based on the existing export method (H.O.T.), 'Boystory' is a representative group that is made with joint investment, which is a direct investment method. In February 2020, RBW released 'D1Verse,' a five-member group selected by Vietnam's reality show, as a joint investment-type group. This shows the possibility that domestic and foreign companies will release a group in the form of joint investment in order to pursue both globalization and localization.

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation (시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법)

  • Lee, Jae Seong;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.409-415
    • /
    • 2022
  • Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

Sea Water Type Classification Around the Ieodo Ocean Research Station Based On Satellite Optical Spectrum (인공위성 광학 스펙트럼 기반 이어도 해양과학기지 주변 해수의 수형 분류)

  • Lee, Ji-Hyun;Park, Kyung-Ae;Park, Jae-Jin;Lee, Ki-Tack;Byun, Do-Seung;Jeong, Kwang-Yeong;Oh, Hyun-Ju
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.591-603
    • /
    • 2022
  • The color and optical properties of seawater are determined by the interaction between dissolved organic and inorganic substances and plankton contained in it. The Ieodo - Ocean Research Institute (I-ORS), located in the East China Sea, is affected by the low salinity of the Yangtze River in the west and the Tsushima Warm Current in the south. Thus, it is a suitable site for analyzing the fluctuations in circulation and optical properties around the Korean Peninsula. In this study, seawater surrounding the I-ORS was classified according to its optical characteristics using the satellite remote reflectance observed with Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua and National Aeronautics and Space Administration (NASA) bio-Optical Marine Algorithm Dataset (NOMAD) from January 2016 to December 2020. Additionally, the variation characteristics of optical water types (OWTs) from different seasons were presented. A total of 59,532 satellite match-up data (d ≤ 10 km) collected from seawater surrounding the I-ORS were classified into 23 types using the spectral angle mapper. The OWTs appearing in relatively clear waters surrounding the I-ORS were observed to be greater than 50% of the total. The maximum OWTs frequency in summer and winter was opposite according to season. In particular, the OWTs corresponding to optically clear seawater were primarily present in the summer. However, the same OWTs were lower than overall 1% rate in winter. Considering the OWTs fluctuations in the East China Sea, the I-ORS is inferred to be located in the transition zone of seawater. This study contributes in understanding the optical characteristics of seawater and improving the accuracy of satellite ocean color variables.

The Association between HbA1c and the Biological Exposure Index for Heavy Metals in Community (지역사회 주민의 당화혈색소와 중금속 생체표지자와의 관련성)

  • Min, Young-Sun;Lee, Kwan
    • Journal of agricultural medicine and community health
    • /
    • v.47 no.3
    • /
    • pp.181-188
    • /
    • 2022
  • Objectives: The prevalence of diabetes mellitus was approximately 16% in populations of over age 30 years, and deaths from diabetes mellitus became the sixth most prevalent cause of death by disease. To assess the relationship between HbA1c and heavy metal level in blood and urine, targeted residents were evaluated in a vast steel industrial complex. Methods: We selected 414 subjects for analysis after applying the following exclusion criterion: 18 persons with diabetes mellitus. They took part in a questionnaire survey and underwent blood and urinary assessments. HbA1c and lead (Pb) level were measured in blood and, cadmium (Cd), inorganic arsenic (iAs) and mercury (Hg) were evaluated in urine. Two subgroups were divided by HbA1c 6.5%. Each subgroup was divided by 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th and 90th percentile levels of biological exposure index of the heavy metals for logistic regression. Results: Odd ratios have a tendency to increase as they go from the 90th to the 10th percentile of cadmium. However, lead, arsenic and mercury did not have significant relationships with HbA1c. In correction of age, region, gender and smoking history, a higher distribution in the subgroup with cadmium above 0.8318 ㎍/g creatinine (30th percentile) was demonstrated in the subgroup with HbA1c levels above the 6.5%, with an odds ratio of 5.26 (95% C.I. ; 1.44~19.17). Conclusion: This study found a significant correlation between urinary levels of cadmium and HbA1c in correction of several factors. It is meaningful that this outcome may be used as a basis for a study to establish the acceptable limit of urinary cadmium in Korea.

Dehydration of Lactic Acid to Bio-acrylic Acid over NaY Zeolites: Effect of Calcium Promotion and KOH Treatment (NaY 제올라이트 촉매 상에서 젖산 탈수반응을 통한 바이오아크릴산 생산: Ca 함침 및 KOH 처리 영향)

  • Jichan, Kim;Sumin, Seo;Jungho, Jae
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • With the recent development of the biological enzymatic reaction industry, lactic acid (LA) can be mass-produced from biomass sources. In particular, a catalytic process that converts LA into acrylic acid (AA) is receiving much attention because AA is used widely in the petrochemical industry as a monomer for superabsorbent polymers (SAP) and as an adhesive for displays. In the LA conversion process, NaY zeolites have been previously shown to be a high-activity catalyst, which improves AA selectivity and long-term stability. However, NaY zeolites suffer from fast deactivation due to severe coking. Therefore, the aim of this study is to modify the acid-base properties of the NaY zeolite to address this shortcoming. First, base promoters, Ca ions, were introduced to the NaY zeolites to tune their acidity and basicity via ion exchange (IE) and incipient wetness impregnation (IWI). The IWI method showed superior catalyst selectivity and stability compared to the IE method, maintaining a high AA yield of approximately 40% during the 16 h reaction. Based on the NH3- and CO2-TPD results, the calcium salts that impregnated into the NaY zeolites were proposed to exit as an oxide form mainly at the exterior surface of NaY and act as additional base sites to promote the dehydration of LA to AA. The NaY zeolites were further treated with KOH before calcium impregnation to reduce the total acidity and improve the dispersion of calcium through the mesopores formed by KOH-induced desilication. However, this KOH treatment did not lead to enhanced AA selectivity. Finally, calcium loading was increased from 1wt% to 5wt% to maximize the amount of base sites. The increased basicity improved the AA selectivity substantially to 65% at 100% conversion while maintaining high activity during a 24 h reaction. Our results suggest that controlling the basicity of the catalyst is key to obtaining high AA selectivity and high catalyst stability.