• Title/Summary/Keyword: 변속기유

Search Result 11, Processing Time 0.021 seconds

A study on the evaluation of metal component in automatic transmission fluid by vehicle driving (차량 운행에 따른 자동변속기유(ATF) 금속분 분석평가 연구)

  • Lee, Joung-Min;Lim, Young-Kwan;Doe, Jin-Woo;Jung, Choong-Sub;Han, Kwan-Wook;Na, Byung-Ki
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • Automatic transmission fluid (ATF) is used for automatic transmissions in the vehicle as the characterized fluid. Recently, the vehicle manufacture usually guarantee for fluid change over 80000~100000 km mileage or no exchange, but most drivers usually change ATF below every 50000 km driving in Republic of Korea. It can cause to raise environmental contamination by used ATF and increase the cost of driving by frequently ATF change. In this study, we investigate the various physical properties such as flash point, fire point, pour point, kinematic viscosity, cold cranking simulator, total acid number, and metal component concentration for fresh and used ATF after driving (50000 km, 100000 km). The result showed that the total acid number, pour point, Fe, Al and Cu component had increased than fresh ATF, but 2 kind of used oil (50000 km and 100000km) had similar physical values and metal component concentration.

The Monitoring Study of Exchange Cycle of Automatic Transmission Fluid (자동변속기유(ATF) 교환주기 모니터링 연구)

  • Lim, Young-Kwan;Jung, Choong-Sub;Lee, Jeong-Min;Han, Kwan-Wook;Na, Byung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.274-278
    • /
    • 2013
  • Automatic transmission fluid (ATF) is used as an automatic transmission in the vehicle or as a characterized fluid for automatic transmission. Recently, vehicle manufacturers usually guarantee for changing fluids over 80000~100000 km mileage or no exchange. However, most drivers usually change ATF below every 50000 km driving distance when driving in Republic of Korea according to a survey from the Korea Institute of Petroleum Management which can cause both a serious environmental contamination by the used ATF and an increase in the cost of driving. In this study, various physical properties such as flash point, pour point, kinematic viscosity, dynamic viscosity at low temperature, total acid number and four-ball test were investigated for both fresh ATF and used ATF after the actual vehicle driving distance of 50000 km and 100000 km. It was shown that most physical properties were suitable for the specification of ATF, but the foam characteristics of the used oil after running 100000 km was unsuitable for the specification of fresh ATF. Therefore, the exchange cycle of ATF every 80000~100000 km driving distance is recommended considering great positive contributions to preventing environmental pollution and reducing driving cost.

자동변속기용 윤활기유

  • 권완섭;양시원;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.87-108
    • /
    • 2005
  • PDF

Experimental Study on Auto-Transmission Fluid Heat Exchanger for Improving Vehicle Fuel Efficiency (차량 연비개선을 위한 자동변속기유 열교환기에 대한 실험적 연구)

  • Jang, Chung-Man;Lee, Yong-Kyu;Kang, Byeong-Dong;Yoo, Jai-Suk;Lee, Jong-Hwa;Kim, Hyun-Jung;Kim, Dong-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.947-954
    • /
    • 2011
  • Drive-train friction loss in a vehicle may account for 4% of its total fuel consumption loss. An ATF W/C (auto-transmission fluid warmer/cooler) plate-fin heat exchanger is a type of heat exchanger that uses metal plates to transfer heat between the auto-transmission fluid and coolant. The use of an ATF W/C heat exchanger can result in a fuel economy improvement of about 1% in vehicles. An experimental setup for testing the thermal performance of an ATF W/C plate-fin heat exchanger is developed. In this study, the influence of the ATF and coolant, flow rates, and temperature on the efficiency of an ATF W/C heat exchanger are investigated experimentally. From the experimental data, a simple correlation for predicting the efficiency of an ATF W/C heat exchanger is proposed. On the basis of this correlation, the fuel economy of a vehicle with and without an ATF W/C heat exchanger is compared by using Simulink. Finally, it is shown that the fuel economy is improved by 0.992% when an ATF W/C heat exchanger is installed in the vehicle.

Study on the Lubricant Flow Behaviors in the Wet Clutch Pack System of Dual Clutch Transmission (습식 DCT(Dual Clutch Transmission) 클러치 팩 내부에서의 체결 동작에 따른 변속기유 거동 연구)

  • Kim, WooJung;Lee, SangHo;Jang, Siyoul
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.85-91
    • /
    • 2017
  • This work studies the flow behaviors in the gap between the friction pad and separator in wet-clutch systems. The fluid volume of the lubricant is modeled using the entire system of wet-clutch pack of a dual clutch transmission that has larger outer radius of odd gear shifts and smaller inner radius of even gear shifts. Flow behaviors in the gap of the clutch pad are computed using the gear shift modes that consider the real relative velocities between the friction pad and separator. Flow behaviors in the gap of the disengaged clutch pad are mainly investigated for the wet-clutch system, whereas the engaged clutch pad is modeled with no fluid rate through the contacting surfaces. The developed hydrodynamic fluid pressures and velocity fields in the clutch pad gap are computed to obtain the relevant information for managing flow rates in wet-clutch packs under dual operating conditions during gear shifts. These hydrodynamic pressures and velocity fields are compared on the basis of each gear level and gap location, which is necessary to determine the effects of groove patterns on the friction pad. Shear stresses in the gap locations are also computed on the basis of the gear level for the inner and outer clutch pads. The computed results are compared and used for the design of cooling capacity against frictional heat generation in wet-clutch pack systems.

윤활유 첨가제들의 상호작용에 의한 마찰 마모 특성의 변화

  • 강석춘
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1989.11a
    • /
    • pp.16-40
    • /
    • 1989
  • 엔진오일 첨가제는 오일 전체의 성질에 영향을 주는 것과 윤활 부품의 표명 성질에 영향을 미치는 것으로 크게 구분할 수 있다. 표면 작용용 첨가제 들의 상호작용은 기대이하의 성능을 발휘하는 경우가 있고 그 원인은 첨가제의 상호작용에 의한 것으로 볼 수 있으므로 가능한 범위내에서 실험적으로 살펴보기로 한다. 현대자동차의 엔진과 변속기에 요구되는 윤활유 성능 특성을 만족시키기 위해서는 기유에 요구되는 적당한 성능을 발휘하기 위한 특수한 첨가제를 넣어주어야만 한다. 그러나 첨가제를 개발하는 과정에서 한가지 첨가제의 특성은 그 자체를 실험한 경우와 매우 상이한 결과가 완전히 혼합된 오일에서 나타남을 경험하게 된다. 이것은 첨가제들 자체의 상호작용에 의한 원인으로 암시되지만 이들에 관련된 연구나 지식은 상당히 제한되어 있다. 따라서 첨가제으 상호작용에 관한 실례를 찾아보고 관련자료를 검토해 보는 것은 의미있는 일이라 생각된다. 윤활오일 첨가제가 오일 자체의 성질에 영향을 주는 것으로 점도 시수향상제, 산화 방지제 같은 것이 있고 마찰 표면 특성에 영향을 미치는 내마모성 첨가제, 극압첨가제, 청정제, 분산제, 마찰 계수 감소제 등으로 크게 구분된다. 오일자체에 영향을 미치는 첨가제는 서로 별개로 작용하지만 그래도 상호 반응을 할 수 있다. 예를 들면 자유기 억제제와 과산화물 분해형식의 산화억제제의 혼합물은 산화억제 성능을 최대화 시켜준다.

  • PDF

Effects of Base Oils on Performance of Automatic Transmission Fluid (윤활기유가 자동변속기유의 성능에 미치는 영향)

  • 문우식;양시원
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.273-279
    • /
    • 2000
  • Until recently performance requirements for automatic transmission fluids have continued to change to reflect the design changes of automatic transmission. The major purpose for these design changes is to improve the fuel economy and easy driving. To meet recent performance requirements fur automatic transmission the needs for special base oils Bike API Group III and IV base oils become larger. In this paper to evaluate the effects of base oils on performance of automatic transmission fluids formulated with API Group I,II,III and IV and Dexron III and Hereon Type additive package, Brookfield viscosity, oxidation test, SAE No.2 friction test and seal compatibility test were examined. From the test we knew that the use of Croup III and IV base oils in ATF has several benefits in low temperature viscosity, oxidation stability and SAE No.2 friction characteristics.

  • PDF