• Title/Summary/Keyword: 벽체 스프링

Search Result 9, Processing Time 0.026 seconds

Nonlinear Analytical Model of Unreinforced Masonry Wall using Fiber and Shear Spring Elements (파이버 및 전단 스프링요소를 이용한 비보강 조적벽체의 비선형 해석모델)

  • Hong, Jeong-Mo;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.283-291
    • /
    • 2018
  • This study intends to develop an analytical model of unreinforced masonry(URM) walls for the nonlinear static analysis which has been generally used to evaluate the seismic performance of a building employing URM walls as seismic force-resisting members. The developed model consists of fiber elements used to capture the flexural behavior of an URM wall and a shear spring element implemented to predict its shear response. This paper first explains the configuration of the proposed model and describes how to determine the modeling parameters of fiber and shear spring elements based on the stress-strain curves obtained from existing experimental results of masonry prisms. The proposed model is then verified throughout the comparison of its nonlinear static analysis results with the experimental results of URM walls carried out by other researchers. The proposed model well captures the maximum strength, the initial stiffness, and their resulting load - displacement curves of the URM walls with reasonable resolution. Also, it is demonstrated that the analysis model is capable of predicting the failure modes of the URM walls.

The Behavior of Earth Retaining Structures Using p-y Curve with Coupling (p-y 특성곡선의 Coupling을 고려한 토류벽의 거동해석)

  • Kim, Soo Il;Jeong, Sang Seom;Chang, Buhm Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.553-563
    • /
    • 1994
  • The behavior of earth retaining structure was investigated by considering coupling between soil springs in elasto-plastic soil. For the computation of soil reaction, soil on both sides of walls was simplified as e1asto-plastic springs, and the required horizontal displacement to mobilize Terzaghi's active and passive state was applied to construct the p-y curve. Reliability on computer program developed is verified through the comparison between prediction and in-situ measurements. Based on the results obtained, it is found that the prediction by using coupling between soil springs simulates well the general trend observed by the in-situ measurements. It is also found that the horizontal displacement required for the active state gives a very small effect to the displacement of walls in the sandy soil.

  • PDF

Comparison of Behaviors of Jointless Bridge according to Depth of Abutment Among Numerical Models (수치해석 모델에 따른 무조인트 교량의 교대 깊이별 거동 비교)

  • Kim, Seung-Won;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2022
  • This study investigates the behavior of a jointless bridge that integrates superstructure and abutment without an expansion joint. Based on the sensitivity analyses conducted in previous studies, a shell-based model was determined to be the most suitable numerical analysis model for jointless bridges due to the similarity of the model's results compared with the obtained displacement shape, which was influenced by relative errors, precision, and practical aspects. Accordingly, the behavior of a jointless bridge was analyzed at various wall depths using shell element-based and solid element models. In addition, the results of MIDAS Civil and ABAQUS analysis programs were compared. In the case of semi-integrated bridges (A and B), the displacement decreased as the wall depth increased due to the ground reaction force in Case 1 under a linear spring condition and +30℃. In the case where temperature was -30℃, the change in displacement was small because the ground reaction did not occur. As for bridge C (a fully integrated alternating bridge) and bridge D (an integrated chest wall alternating bridge), the displacement decreased as the wall depth increased at both +30 and -30℃ due to pile resistance. As for the comparison between the analysis programs used, the relative error in Case 1 was small, whereas a significant difference in Case 2 was observed. The foregoing variation is possibly due to the difference in the application of the nonlinear spring in the programs.

A Study on the Recording Technology of Fire Propagation Prevention Wall Using Horticultural Plants (원예식물을 식재한 화재확산 방지용 벽면녹화 기술연구)

  • Moon, Jong-Wook;Lim, Seo-Hyung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.107-114
    • /
    • 2018
  • Purpose : This study is to develop walls using wall recording technology applied on roofs to prevent fire spread in traditional markets. Method : The spray head installed on the developed wall was designed so that the fire does not spread to adjacent buildings after being used for plants. In addition, a spray head was attached to the upper section and some sections for the growth of plants planted on the wall to prevent the spread of fire. Results : These technologies suggested the development of walls that can be installed at the upper level of buildings, such as traditional markets, and separate isolation facilities were not necessary because they are integrated with structures and sprinklers. In addition, sprinklers can perform both the plant spray and fire spread prevention functions. It is believed that this is the only alternative technology proposed in Korea to prevent the spread of fire. Conclusion : In this study, the wall design, designed directly to derive the quantitative performance of the fire spread reduction effect, demonstrated the fire suppression method of the wall system, the durability of the wall itself, and the flame retardability performance.

A Simple Model for the Nonlinear Analysis of an RC Shear Wall with Boundary Elements (경계요소를 가진 철근콘크리트 전단벽의 비선형 해석을 위한 간편 모델)

  • Kim, Tae-Wan;Jeong, Seong-Hoon;You, Tae-Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.45-54
    • /
    • 2011
  • A simple model for reinforced concrete shear walls with boundary elements is proposed, which is a macro-model composed of spring elements representing flexure and shear behaviors. The flexural behaviour is represented by vertical springs at the wall ends, where the moment strength and rotational capacity of the wall are based on section analysis. The shear behaviour is represented by a horizontal spring at the wall center, where the key parameters for the shear behavior are based on the flexural behaviour since the shear walls with boundary elements are governed by the flexure. The proposed model was prepared with the results of hysteretic tests of the shear walls, and then the reliability of the hysteretic rule and variables was investigated by nonlinear dynamic analyses. Using parametric study with nonlinear dynamic analyses, the effect of the variables on demand and capacity, which are major parameters in seismic performance evaluation, are investigated. Results show that the measured and calculated shear forces versus the shear distortion relationships are slightly different, but the global response is well simulated. Furthermore, the demand and capacity are also changed in a similar way to the change in the major parameters so that the proposed model may be appropriate for reinforced concrete shear walls with boundary elements.

Development of Simplified Hystersis Model of Boundary Column of Shear Wall for the Nonlinear Analysis (비선형 해석을 위한 전단벽 보강기둥의 단순 반복이력 모델 개발)

  • 이영욱
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.145-153
    • /
    • 1997
  • 전단벽제 양단의 보강기둥은 비선형 휨거동에 주요 영향을 미치는 구조 요소이다. 본 연구에서는 전단 벽체에 일반적으로 사용되는 모델인 TVLEM에서, 수직 스프링 요소로 표현되는 보강기둥의 반복이력 모델을 제안하고 기존의 모델과 비교 검토하였다. 제안된 단순모델은 Vulcano의 모델 중 철근의 거동을 이중직선으로 가정하여 유도되었으며, 제안된 모델을 검증하기 위하여 Vulcano와 Kabeyasawa의 모델 사용시의 수치해석 값과 비교하였다. 비선형 해석은 자체 개발된 프로그램을 사용하였으며, Vallenas와 Bertero가 실험(1979)한 SP6의 모델에 대하여 수치해석을 수행하여 반복이력특성과 변위이력 및 발산에너지량을 비교하였다.

Restrained Stroke Active Tuned Mass Damper (제한진폭 능동형 질량동조감쇠장치)

  • Kwon, Jang-Sub;Chang, Sung-Pil;Yoo, Hong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.9-22
    • /
    • 2005
  • The allowed operation space for the mass damper in an active tuned mass damper (ATMD) system is limited for most civil structures. In this study, a restrained stroke active tuned mass damper (RS-ATMD) system with a end-spring and a holder that reduces the stroke of the mass damper with maintaining the control effect durably is proposed. This new control system functions as a conventional ATMD within the predetermined stroke limitation under small excitation and as an RS-ATMD beyond that limitation under large excitation. A new control algorithm considering such an operation principle of the RS-ATMD are also provided. Parameteric study for the various design factors of the RS-ATMD is conducted and the control effectiveness are investigated in comparison with the ATMD. Exposed to sinusoidal or impact load, the RS-ATMD system shows the considerable reduction of the maximum stroke of the mass damper with the slight diminution in the control effectiveness. Excited by random load, it also shows the considerable reduction of the maximum stroke of the mass damper not allowing the diminution in the control effectiveness.

Beam on Elasto-Plastic Foundation Modeling of Tieback Walls (앵커토류벽의 탄소성보 해석에 관한 연구)

  • 김낙경
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.81-92
    • /
    • 1998
  • A beam on elasto-plastic foundation modeling of soldier pile and woodlagging tieback walls or anchored walls was developed and tested. An instrumented full scale tieback wall in sand was constructed at the National Geotechnical Experimentation Bite located on Texas A&M University. The experimental earth pressure deflection relationship (p-y curves) was developed from the measurements. The construction sequence was simulated in the proposed method. The conceptual methodology of an anchored wall design was introduced by using the proposed method. The proposed method was evaluated with the measurements of case histories in sand and clay. A parametric research was performed to study the most influencing factors for the proposed method. It is concluded that the proposed method represents a significant improvement on the prediction of bending moments and deflections of the properly designed walls.

  • PDF

Three-Dimensional Finite Element Analysis of Tieback Walls in Sand

  • Lim, Yu-Jin;Briaud, Jean-Louis
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.33-52
    • /
    • 1997
  • A three dimensional nonlinear finite element analysis is used to study the influence of various design decisions for tieback walls. The numerical model simulates the soldier piles and the tendon bonded length of the anchors with beam elements, the unbonded tendon with a spring element, the wood lagging with the shell elements, and the soil with solid 3D nonlinear elements. The soil model used is a modified hyperbolic model with unloading hysteresis. The complete sequence of construction is simulated including the excavation, and the placement and stressing of the anchors. The numerical model is calibrated against a full scale instrumented tieback wall at the National Geotechnical Experimentation Site (NGES) on the Riverside Campus of Texas A&M University. Then a parametric study is conducted. The results give information on the influence of the following factors on the wall behavior : location of the first anchor, length of the tendon unbonded zone, magnitude of the anchor forces, embedment of the soldier piles, stiffness of the wood lagging, and of the piles. The implications in design are discussed.

  • PDF