• Title/Summary/Keyword: 벽체 미생물

Search Result 15, Processing Time 0.019 seconds

Microbial Contamination in a Facility for Processing of Fresh-Cut Leafy Vegetables (신선편이 채소류 가공작업장 내 시설 및 제품의 미생물 오염 실태)

  • Kim, Byeong-Sam;Lee, Hye-Ok;Kim, Ji-Young;Yoon, Doo-Hyun;Cha, Hwan-Soo;Kwon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.573-578
    • /
    • 2009
  • Microbial contamination levels in a fresh-cut leafy vegetable processing plant were evaluated. Total plate counts of samples collected from the walls, equipment, and raw materials ranged from $10^1{\sim}10^2$ CFU/100 $cm^2$, $10^0{\sim}10^4$ CFU/100 $cm^2$, and $10^4{\sim}10^6$ CFU/g, respectively. No coliforms were detected on walls; however, equipment and raw materials contained coliforms in concentrations ranging from ND (not detected)to $10^2$ CFU/100 $cm^2$ and $10^4{\sim}10^5$ CFU/g, respectively. Additionally, total plate counts for falling and floating bacteria in the processing plant were $10^0{\sim}10^1$ CFU/plate and $10^1{\sim}10^3$ $CFU/m^3$, respectively. Pathogenic microorganisms such as Escherichia coli, Salmonella spp, Staphylococcus aureus, or Listeria monocytogenes were not detected on walls, equipment, or raw materials. Overall, the results of this study indicate that hygiene control in the fresh-cut processing plant should be improved.

Microbial Contamination in a Fresh-Cut Onion Processing Facility (신선편이 양파 가공작업장 내의 시설 및 공정별 미생물 오염 실태)

  • Lee, Hye-Ok;Kim, Ji-Young;Yoon, Doo-Hyun;Cha, Hwan-Soo;Kim, Gun-Hee;Kim, Byeong-Sam
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.567-572
    • /
    • 2009
  • We evaluated the microbiological quality of a facility in which freshly cut onions were prepared. The total plate counts on walls, equipment, and raw materials were ND (not detected) to $10^1$ CFU/100 $cm^2$, $10^0{\sim}10^3$ CFU/100 $cm^2$, and $10^3{\sim}10^4$ CFU/g, respectively. No coliforms were detected on walls however, coliforms were detected at concentrations of ND to $10^3$ CFU/100 $cm^2$ and $10^3{\sim}10^4$ CFU/g on equipment and raw materials, respectively. The total plate counts for falling and floating bacteria in the processing plant were ND to $10^0$CFU/plate and $10^1{\sim}10^2$ $CFU/m^3$, respectively. Pathogenic microorganisms such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Listeria monocytogenes were not detected on walls, equipment, or raw materials. Overall, the results of the study indicate that hygiene control at the fresh-cut processing plant should be improved.

파쇄 폐타이어가 혼합된 생물학적 반응벽체에 관한 연구 : 폐타이어와 미생물의 MTBE (Methyl tertiary Butyl Ether) 흡착

  • 정수봉;이재영;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.23-26
    • /
    • 2004
  • Methyl Tertiary-Butyl Ether is one of several fuel oxygenates added to gasoline to improve fuel combustion and reduce tile resulting concentration of hydrocarbon. Thus, MTBE transfer readily to groundwater from gasoline leaking from Underground Storage Tank. Therefor, there are significant risks and costs associated with the water contamination. MTBE is far more water soluble than gasoline hydrocarbon. The purpose of the this study is to test the ability of ground tire with facultative bacteria. Bacillus brevis, to sorb MTBE. The process is consisted both batch and column experiment to determine the sorption capacity. And Biofilm is observed by SEM in the column. Finally, it is clear that ground tire represent an attractive and relatively inexpensive sorption medium for a MTBE. The authors can surmise that to determine the economic cost of ground tire utilization, tile cost to sorb a given mass of contaminant by ground tire will have to be compared to currently accepted sorption media. and Bacillus brevis strain was eliminated on MTBE, too. The biobarrier that ground tire with bacteria, has potential for use in the remediation of MTBE-contaminated environments.

  • PDF

Biochemical Characteristics and Growth Control for fungi isolated from mural painting of Tomb No.6 at Songsan-ri, Gongju (공주 송산리 6호분에서 분리한 진균의 생화학적 특성 분석 및 생장제어 연구)

  • Lee, Min Young;Park, Hee Moon;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.31 no.3
    • /
    • pp.227-241
    • /
    • 2015
  • Fungi were isolated from mural painting in tomb no.6 at songsan-ri, Gong-ju. Antifungal susceptibility of essential oils extracted from natural medicine was tested and it confirmed applicability for mural painting in tombs. 26 species of fungi collected from air-borne and wall surfaces were identified to 15 species of Ascomycetes, 2 species of Zygomycetes, 1 of Basidiomycetes. Wheat starch and gelatin degradability were evaluated as isolated fungi. SY-18, SY-23, SY-25 showed high degradability of wheat starch. SY-18, SY-21, SY-23 were decomposed into gelatin. Biochemical characteristics of decomposing fungi to wheat starch glue and cowhide glue were analyzed by using ${\alpha}-amylase$ and gelatinase activity. An Antifungal test was conducted in Anethole and Eugenol. Anethole and Eugenol mixture(1:2) showed high antifungal susceptibility. Natural adhesives help microbial growth and can cause structural damage in mural painting. The expectation of this study is the possibility to control microbial growth in wall painting using natural essential oils. It can be used as a data for conservation method to control microbial damages.

Field Assessment of in Situ Remediation of NO3--contaminated Ground Water Using Zero-valent Iron/Bio Composite Media (영가철/바이오 복합처리제를 이용한 질산성 질소 오염 지하수의 현장 지중정화 적용성 평가)

  • Joo, Wan-Ho;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • In this study, the assessment of field applicability of in-situ remediation of nitrate-contaminated groundwater located in Yesan-gun was performed. Zero-valent iron/bio composite media injected PRB (Permeable Reactive Barrier) and monitoring well were installed in the contaminated groundwater site and monitored main remediation indicators during the PRB operation. Nitrate, nitrite, ammonia, Fe ion, TOC, and turbidity were analyzed and the diversity and population of microorganism in the PRB installed site were investigated for the verification of effect of injected PRB. In the study site where is an agricultural area, a river flows from west to east that forms a river boundary and the southern area has an impermeable sector. It was found that nitrate flows into the river, which is similar as groundwater flow. Simulation result for the fate of nitrate in groundwater showed steady state of nitrate arrived after 3~5 years passed. However, it is just to consider current conditions with no additional input of contaminant source, if additional input of contaminant source occurs contamination dispersion and time for steady state are expected to be increased. The monitoring results showed that Fe ion, TOC and turbidity in groundwater were not clearly changed in concentration after PRB installation, which indicates adaptability of the injected PRB for remediation of groundwater with no additional harmful effect to water quality. The concentration of nitrate maintained less than 5mg/L until 42 days after PRB installation and recovered its initial concentration after 84 days passed and showed termination of reactivity of injected zero-valent iron/bio composite media for removal nitrate. Nitrite and ammonia ions found after installation of PRB indicates reductive removal of nitrate. And the outstanding increase of microorganism diversity and population of Betaproteobacteria Class which includes denitrification microorganism explains biologically reductive removal of nitrate in injected PRB.