• Title/Summary/Keyword: 벽체 미생물

Search Result 15, Processing Time 0.009 seconds

Mechanism of TCE Removal with Foundry Sands and Design of Permeable ]Reactive Barriers (주물사의 TCE 제거 메커니즘과 반응벽체에의 적용가능성)

  • ;Benson, Craig H
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.143-157
    • /
    • 2002
  • Batch and column tests were conducted with common groundwater contaminants (i.e., trichloroethylene) to determine transport parameters and reactivity of the foundry sands. The reactivities of foundry sands for common groundwater contaminants are comparable to or slightly higher than those for Peerless iron a common medium used in permeable reactive barriers. In addition, the TOC and clay in foundry sands can significantly retard the movement of target contaminants, which may result in lower effluent concentrations of contaminants due to biodegradation. In general, permeable reactive barriers with the thickness of 1m can be constructed with many foundry sands to treat typical groundwater comtaminants provided the zero-valent iron content in the foundry sand is higher than 1%.

Developing a Numerical Model for Simulating In-Situ Biodegradation of an Organic Contaminant, TCE, in Biobarrier (생물벽체내 유기오염물질 TCE의 생물학적 분해 모의를 위한 수치모델개발)

  • 왕수균;오재일;배범한
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.12-20
    • /
    • 2003
  • This study presents a mathematical model for simulating the fate and transport of a reactive organic contaminant, TCE, degraded by cometabolism in dual-porosity soils during the installation of in situ biobarrier. To investigate the effect of dual-porosity on transport and biodegradation of organic hydrocarbons, a bimodal approach was incorporated into the model. Modified Monod kinetics and a microcolony concept were employed to represent the effects of biodegrading microbes on the transport and biodegradation of an organic contaminant. The effect of permeability reduction in biobarrier due to biomass accumulation on the flow field were examined in the simulation of a hypothetical field-scale in situ bioaugmentation. Simulation results indicate that the presence of the immobile region can decrease the bioavailability of biodegradable contaminants and that the placement of microbes and nutrients injection wells should be considered for an effective installation of biobarrier during in situ bioaugmentation scheme.

A Semi-Pilot Test of Bio-barrier for the Removal of Nitrate in Bank Filtrate (강변여과수의 질산성질소 제거를 위한 생물학적 반응벽체의 준파일럿 실험에 관한 연구)

  • Moon, Hee-Sun;Chang, Sun-Woo;Nam, Kyoung-Phile;Kim, Jae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.302-308
    • /
    • 2005
  • Nitrate is one of common contaminants frequently found in the bank filtrate. Biological autotrophic denitrification into permeable reactive barrier(PRB) system to reduce nitrate concentration in bank filtrate was implanted. The objectives of research are to investigate effect of inoculation, to evaluate alternative alkalinity sources, and to determine effect of hydraulic characteristics, such as retention time, flow rate on the performance of semi-pilot PRB system. Semi-pilot scale biological PRB system was installed using elemental sulfur and limestone/oyster shell as reactive materials near Nakdong River in Kyoungnam province, Korea. Nitrate concentration in bank filtrate was reduced by indigenous microorganisms in oyster shell as welt as by inoculating microorganisms isolated from the sludge of an anaerobic digester in a wastewater treatment plant. Oyster shell as well as limestone can be used as an alkalinity source. However, oyster shell resulted in suspended solids of effluent. As the flow rate in the system increased from 66 to 132 mL/min and accordingly the residence time decreased from 15 to 7.5 hours, nitrate concentration in effluent increased and nitrate removal efficiencies decreased from 75 to 58% at the fixed thickness of 80 cm of PRB.

Pilot-scale Applications of a Well-type Reactive Barrier using Autotrophic Sulfur-oxidizers for Nitrate Removal (독립영양 황탈질 미생물을 이용한 관정형 반응벽체의 현장적용성 연구)

  • Lee, Byung-Sun;Um, Jae-Yeon;Lee, Kyu-Yeon;Moon, Hee-Sun;Kim, Yang-Bin;Woo, Nam-C.;Lee, Jong-Min;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.40-46
    • /
    • 2009
  • The applicability of a well-type autotrophic sulfur-oxidizing reactive barrier (L $\times$ W $\times$ D = $3m\;{\times}\;4\;m\;{\times}\;2\;m$) as a long-term treatment option for nitrate removal in groundwater was evaluated. Pilot-scale (L $\times$ W $\times$ D = $8m\;{\times}\;4\;m\;{\times}\;2\;m$) flow-tank experiments were conducted to examine remedial efficacy of the well-type reactive barrier. A total of 80 kg sulfur granules as an electron donor and Thiobacillus denitrificans as an active bacterial species were prepared. Thiobacillus denitrificans was successfully colonized on the surface of the sulfur granules and the microflora transformed nitrate with removal efficiency of ~12% (0.07 mM) for 11 days, ~24% (1.3 mM) for 18 days, ~45% (2.4 mM) for 32 days, and ~52% (2.8 mM) for 60 days. Sulfur granules attached to Thiobacillus denitrificans were used to construct the well-type reactive barrier comprising three discrete barriers installed at 1-m interval downstream. Average initial nitrate concentrations were 181 mg/L for the first 28 days and 281 mg/L for the next 14 days. For the 181 mg/L (2.9 mM) plume, nitrate concentrations decreased by ~2% (0.06 mM), ~9% (0.27 mM), and ~15% (0.44 mM) after $1^{st}$, $2^{nd}$, and $3^{rd}$ barriers, respectively. For the 281 mg/L (4.5 mM) plume, nitrate concentrations decreased by ~1% (0.02 mM), ~6% (0.27 mM), and ~8% (0.37 mM) after $1^{st}$, $2^{nd}$, and $3^{rd}$ barriers, respectively. Nitrate plume was flowed through the flow-tank for 49 days by supplying $1.24\;m^3/d$ of nitrate solution. During nitrate treatment, flow velocity (0.44 m/d), pH (6.7 to 8.3), and DO (0.9~2.8 mg/L) showed little variations. Incomplete destruction of nitrate plume was attributed to the lack of retention time, rarely transverse dispersion, and inhibiting the activity of denitrification enzymes caused by relatively high DO concentrations. For field applications, it should be considered increments of retention time, modification of well placements, and intrinsic DO concentration.

Effect of Electron Donor on the Reductive Dechlorination of PCE in Groundwater Using Biobarrier: Batch Experiment (생물벽체를 이용한 지하수내 PCE의 환원성 탈염소화시 전자공여체의 영향: 회분식 실험)

  • HwangBo, Hyun-Wook;Shin, Won-Sik;Kim, Young-Hun;Song, Dong-Ik
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.22-37
    • /
    • 2006
  • The applicability of biobarrier or in situ microbial filter technology for the remediation of groundwater contaminated with chlorinated solvent was investigated through batch microcosm study. The efficiency and rates of reductive dechlorination of tetrachloroethylene (PCE) are known to be highly dependent on hydrogen concentration. In this study, the effect of electron donors on the reductive dechlorination of PCE was investigated using vermicompost (or worm casting) and peat as a biobarrier medium. The effect of organic acids (lactate, butyrate and benzoate), yeast extract and vitamin $B_{12}$ on the reductive dechlorination was investigated. In the absence of biobarrier medium (adsorbent), addition of electron donors stimulated the dechlorination rate of PCE compared to the control experiment (i.e., no electron donor added). Among the treatments, addition of lactate or lactate/benzoate as hydrogen donor exhibited the highest dechlorination rate ($k_1=0.0260{\sim}0.0266\;day^{-1}$). In case of using vermicompost as a biobarrier medium, amendment of lactate/benzoate exhibited the highest dechlorination rate following with a pseudo-first-order degradation rate constant of $k_1=0.0849\;day^{-1}$. In contrast, when Pahokee peat was used as a biobarrier medium, either butyrate or lactate addition exhibited the highest dechlorination rate with $k_1$ values of 0.1092 and $0.1067\;day^{-1}$, respectively. The results of this study showed the potential applicability of in situ biobarrier technology using vermicompost or peat as a barrier material for the remediation of groundwater contaminated with chlorinated solvent.

Microbial Adaptation in a Nitrate Removal Column Reactor Using Sulfur-Based Autotrophic Denitrification (질산성 질소 제거를 위한 독립영양 황탈질 칼럼에서의 미생물 적응에 관한 연구)

  • Shin, Do-Yun;Moon, Hee-Sun;Kim, Jae-Young;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.38-44
    • /
    • 2006
  • Two sulfur-based column reactors inoculated with a bacterial consortium containing autotrophic denitrifiers were operated for 100 and 500 days, respectively and nitrate removal efficiency and the adaptation of microbial communities in the columns were monitored with column depths and time. For better understanding the adaptation phenomenon, molecular techniques including 16S rDNA sequencing and DGGE analysis were employed. Although both columns showed about 99% of nitrate removal efficiency heterotrophic denitrifiers such as Cenibacterium arsenioxidans and Geothrix fermentans were found to a significant portion at the initial stage of the 100-day reactor operation. However, as operation time increased, an autotrophic denitrifier Thiobacillus denitrificans became a dominant bacterial species throughout the column. A similar trend was also observed in the 500-day column. In addition, nitrate removal efficiencies were different with column depths and thus bacterial species with different metabolic activities were found at the corresponding depths. Especially, T. denitrificans was successfully adapted and colonized at the bottom parts of the columns where most nitrate was reduced.

Conservation Environment for Mural Tomb in Goa-ri, Goryeong (고령 고아리 벽화고분의 보존환경 연구)

  • Jeong, Seon Hye;Lee, Hyun Ju;Lee, Min Young;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.33 no.3
    • /
    • pp.189-201
    • /
    • 2017
  • This study focused on the Gaya mural tomb located in Goa-ri, Goryeong-gun, North Gyeongsang Province, Republic of Korea. Environmental factors such as ambient temperature, relative humidity and surface temperature, and microbial distribution on mural tombs were monitored for one year to gather data on the conservation environment of the mural tombs. The average internal temperature difference with reference to the ambient outer temperature was observed to be $11.7^{\circ}C$ for the monitoring period and the internal temperature of the tomb was found to change periodically every one or two months in response to the outer temperature. The highest temperature was observed in September and the lowest in March. The relative humidity in the mural tomb remained constant at 100%. Between December and April, condensation occurred on the ceiling of the main room of the tomb, where the murals are located. On the ceiling of the aisle, the condensation occurred throughout the year. The inside and surface wall were isolated from microorganisms, which could grow when a suitable growth environment suitable is established. Based on microbial growth temperature conditions, risk periods of microbial hazards were established, where in the period from August to October was identified as the most dangerous.

Arsenic Adsorption onto Pseudomonas aeruginosa Cell Surface (Pseudomonas aeruginosa 표면에 대한 비소의 흡착특성)

  • Lee Jong-Un;Park Hyun-Sung
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.525-534
    • /
    • 2005
  • Adsorption experiments for As(V) and As(III) onto the surfaces of aerobic Pseudomonas aeruginosa, which can be readily isolated from natural media, were conducted under nutrient-absent conditions. While a small amount of As(III) was adsorbed on the bacterial cell surfaces, As(V) was not effectively removed from the solution through adsorption. The result was likely due to the electrostatic repulsion between anionic compounds of aqueous As(V) and cell surfaces of f aeruginosa. However, the bacteria forming biofilm reduced a large amount of aqueous As(V) to As(III), which indicated that microorganisms in most oligotrophic, natural geologic settings can mediate the behavior of aqueous As. Biobarriers designed to remove the various heavy metals in contaminant plume may practically lead to the enhancement of toxicity and mobility of As.

Conservation Environmental Assessment and Microbial Distribution of the Songsan-ri Ancient Tombs, Gongju, Korea (공주 송산리 고분 내 미생물 분포 및 보존환경 연구)

  • Lee, Min Young;Kim, Dae Woon;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.169-179
    • /
    • 2014
  • After occurrence of Cyanobacteria in 1997, Songsan-ri tombs located in Gonju have been investigated to monitor for biological damage. The room temperature of Tomb No.6 was $18.6{\sim}19.8^{\circ}C$ and the relative humidity was 94.3~99.9%. The temperature of Royal Tomb of King Muryeong was $17.3{\sim}18.53^{\circ}C$ and the relative humidity was 73.2~96.45%. The variation of relative humidity increased after setting up air vents. If the outside temperature increases, dew condensation occurs on the floor and the north side. When conditioning equipment operates, the maximum temperature differences between walls is $2.8^{\circ}C$. Bacteria from the air of the tomb and on the surface of the walls outnumbered fungi. 20 species of fungi including Alternaria sp., Aspergillus sp., Penicillium sp., and 19 species of bacteria including Pseudomonas sp., Arthrobacter sp., are identified. Microbes in the tombs may damage cultural heritage. The growth possibility of microbes should be estimated because the microbes in the tombs may damage mural painting. The interrelation between microenvironmental condition and biological damage of mural painting should be researched to come up with an long-term conservation method.

Reduction of Hydraulic Conductivity in the Subsurface by the Formation of Aerobic Biobarrier (토양 내 호기성 생물벽체(Biobarrier)의 형성에 의한 투수계수의 제어)

  • Bae, Bum-Han;Oh, Je-Ill
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • A series of batch and column experiments were conducted for the development of biobarrier technology which can be applied to containment and reduction of contaminants in soil and ground waters. The growth kinetic constants of Pseudomonas fluorescens on glucose or molasses were determined using batch experiments. The maximum specific growth rate (Vmax) of P. fluorescens at $23^{\circ}C$ on glucose or molasses were $0.246\;hr^{-1}$ and $0.073\;hr^{-1}$, respectively. However, molasses was selected as carbon source due largely to the absence of lag phase of P. fluorescens growth on molasses and economic reason. In constant head column experiments, the hydraulic conductivity of the column soil reduced by $6.8{\times}10^{-3}$ times from $4.1{\times}10^{-2}cm/sec$ to $2.8{\times}10^{-4}cm/sec$ after the inoculation of P. fluorescens and administration of carbon source and nutrients. The biomass concentration was observed highest in the column inlet. Measurements of carbon source and electron accepter (dissolved oxygen) concentration showed that the growth of P. fluorescence, which is the main reason for hydraulic conductivity reduction, was limited not by the concentration of carbon source but by the concentration of electron acceptor.