• Title/Summary/Keyword: 벽체 내력

Search Result 82, Processing Time 0.022 seconds

A Study on the Behavior of Wall-Support Joint of Steel Plate-Concrete Structure (SC(강판-콘크리트)구조 브라켓 접합부 거동에 관한 연구)

  • Kim, Woo Bum;Kim, Kang Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.377-385
    • /
    • 2004
  • An experimental and analytical study on the behavior of the wall-support joint in SC(steel plate-concrete) structure was performed. Nine full-scale specimens were tested with a horizontal monotonic load, all acting in the same plane, causing a uni-axial moment on the SC structure's wall-support beam joint. The main focus is to examine thenonlinear behavior and ultimate strength of the SC wall-support joint. The effects of parameters, such aslocation of support, thickness of the steel plate, and size of support, were studied. The yield strength and ultimate strength of the plate-concrete wall was defined by examining the load-deflection relationship, showing the tension membrane action.

Seismic Capacity Evaluation of Wood Structure Using Soil-Wall Test (흙벽 실험에 의한 목조 건축물의 내진성능 평가)

  • Kim, Hye-Won;Yang, Won-Jik;Oh, Sang-Hoon;Lee, Jung-Han;Park, Byung-Cheol;Yi, Waon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.409-412
    • /
    • 2010
  • 본 연구는 목조 건축물 흙벽의 수평가력실험 결과를 이용한 내진성능 평가를 목적으로 한다. 흙벽 실험시험체는 기둥과 보 결합방식에 따라 민도리, 초익공, 장여방식으로 분류되고 벽체 형태에 따라 창문, 문, 전면 벽체, 인방 부재수 등으로 계획을 하였다. 12개 흙벽 시험체의 가력결과, 전면 벽체 시험체는 변위각 1/30에서 가장 큰 강성 저하율을 보이며 중인방과 수직재가 있는 벽체는 에너지 소산능력이 가장 큰 것으로 나타났다. 기존 연구로부터 목조 건축물 항복점 평가방법을 이용하여 등가탄소성 곡선으로 나타낸 전단내력은 민도리방식이 프레임과 전면 벽체일 경우 가장 크고, 전단응력은 벽체 개구율에 따라 다르게 나타났다. 실험결과로부터 적용 대상 건축물의 X, Y방향 구조성능을 산출하고 구조내진지표와 역량스펙트럼을 이용하여 내진성능 평가를 실시한 결과, 대상 목조 건축물은 내진성이 있음으로 평가되었다.

  • PDF

Limiting Height Evaluation for Cold-Formed Steel Wall Panels (냉간성형강재 벽체 패널의 한계높이 산정)

  • Lee, Young ki;Miller, Thomas H.
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • This study aimed to develop experiment-based limiting heights for interior, nonload-bearing, cold-formed steelwall panels sheathed with gypsum board and subjected to uniformly distributed lateral loadings. Th e limiting heightswere evaluated by their strength (for flexure, shear, and web crippling) and deflection. Limiting heights for deflectionlimits of L/360, L/240, and L/120 (where L is the height of the wall) were developed over the range of typical designpressures.

An Experimental Study on the Influence of Masonry InFilled Walls on the Seismic Performance of Reinforced Concrete Frames with Non-seismic Details (정적실험을 통한 조적채움벽체가 비내진상세 RC 골조의 내진성능에 미치는 영향 평가)

  • Kim, Kyoung-Min;Choen, Ju-Hyun;Baek, Eun-Rim;Oh, Sang-Hoon;Hwang, Cheol-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.114-120
    • /
    • 2017
  • In this paper, the effect of the masonry infill walls on the seismic performance of the reinforced concrete(RC) frames with non-seismic details was evaluated through the static test of an masonry infilled RC frame sub-assemblage with non-seismic details of real size, and comparison with the test results of the RC frame sub-assemblage with non-seismic details. As the test results, lots of cracks occurred on the surface of the entire frame due to the compression of the masonry infilled wall, and the beam-column joint finally collapsed with the expansion of the shear crack and buckling(exposure) of the reinforcement. On the other hand, the stiffness of the shear force-story drift relationship decreased due to the wall sliding crack and column flexural cracks, and the strength finally decreased by around 60% of the maximum strength. The damage that concentrated on the upper and lower parts of columns was dispersed in the entire frame such as columns, a beam, and beam-column joints due to the wall, and the specimen was finally collapsed by expansion of the shear crack of the joint, not the shear crack of the column. Also, the stiffness of RC frame increased by 12.42 times and the yield strength by 3.63 times, while the story drift at maximum strength decreased by 0.18 times.

Experimental Investigation of The Shear Strengthening of Unreinforced Masonry Infilled RC Frames Using CFRP Sheet (CFRP Sheet를 이용한 철근콘크리트 프레임면내 조적벽체의 전단내력 평가에 관한 실험적 연구)

  • Lee, Young-Hak;Kim, Min-Sook;Byon, Eun-Hyuk;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • The purpose of this study is to investigate experimentally the behavior of unreinforced masonry RC frames strengthened by CFRP sheet under cyclic lateral loading. Four test specimens were constructed as one-story, one-bay, 1/2 scale unreinforced masonry infilled RC frames and differences in strength and stiffness were evaluated in specimens on which had been applied different retrofitting methods. Test results indicated that the CFRP sheets significantly increased the strength and stiffness of the specimens, and the specimens retrofitted in columns and masonry indicated the most adequate retrofitting methods.

Fire Resistance Performance of Load Bearing Hybrid Panel Infilled with Light-weight Formed Mortar (복합스터드에 경량기포모르터를 충전한 내력벽체의 내화성능 비교연구)

  • Park, Keum Sung;Bae, Kyu Woong;Kang, Hyun Sik;Lim, Seo Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.109-116
    • /
    • 2007
  • The purpose of this paper is to evaluate the fire resistant performances of load-bearing wall using both composite and steel stud panel infilled with light-weight formed mortar under axial loading according to KS F 2257(1999). The minimum requirement of 2 hours fire resistant rating is needed for the residential and commercial buildings under the fire regulation of Korea. From test results, it is found that two types of specimen composed of the hybrid stud and steel stud panel filled with light-weight formed mortar fited in with the requirement of 2 hours fire resisting rate for the load-bearing wall. In the conclusions, the specimen with hybrid stud shows predominating fire-resistant performance on the adiabatic effects rather than that of the steel stud specimen.

공동주택 경량벽체 내화성능기준 설정

  • An, Jae-Hong;Yeo, In-Hwan;Jo, Gyeong-Suk;Choe, Dong-Ho;Min, Byeong-Ryeol
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.11a
    • /
    • pp.214-215
    • /
    • 2013
  • 공동주택을 기둥식 구조에서 공간을 구획하는 비내력 벽체로 사용되는 경략벽체에 요구되어지는 다양한 성능조건 중 내화성능 기준을 등급으로 구분하여 제시하고자 한다. 공동주택 경량벽체를 세대간 벽과 세대내 벽으로 구분하여 각각의 내화성능 요구수준에 맞는 성능등급을 설정하였으며, 이를 내화실험을 통하여 성능을 확인하였다.

  • PDF

Effect of Crack Control Strips at Opening Corners on the Strength and Crack Propagation of Downsized Reinforced Concrete Walls (축소 철근콘크리트 벽체의 내력과 균열진전에 대한 개구부모서리 균열제어 띠의 영향)

  • Wang Hye-Rin;Yang Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.40-47
    • /
    • 2022
  • The present study aimed to examine the effectiveness of different techniques for controlling the diagonal cracks at the corners of openings on the strength, deformation, and crack propagation in reinforced concrete walls. The crack control strip proposed in this study, the conventional diagonal steel reinforcing bars, and stress-dispersion curved plates were investigated for controlling the diagonal cracks at the opening corners. An additional crack self-healing function was also considered for the crack control strip. To evaluate the volume change ratio and crack width propagation around the opening, downsized wall specimens with a opening were tested under the diagonal shear force at the opening corner. Test result showed that the proposed crack control strip was more effective in reducing the volume change and controlling the crack width around the opening when compared to the conventional previous methods. The crack control strip with crack healing feature displayed the superior performance in improving the strength of the wall and reducing the crack width while healing cracks occurred in the previous tests.

Seismic Resistance of Masonry Walls Strengthened with Unbonded Prestressed Steel Bars and Glass Fiber Grids (강봉 및 유리섬유로 비부착 보강된 조적벽체의 내진 저항성 평가)

  • Baik, Ji-Sung;Yang, Keun-Hyeok;Hwang, Seung-Hyeon;Choi, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.17-26
    • /
    • 2020
  • This study examined the structural effectiveness of the unbonded technique originally developed for seismic strengthening of unreinforced masonry walls on the basis of the prestressed steel bars and glass fiber (GF) grids. The masonry walls were strengthened by using individual steel bars or GF grids and their combination. Test results showed that the proposed technique was favorable in enhancing the strength, stiffness, and ductility of the masonry walls. When compared with the lateral load capacity, stiffness at the ascending branch of the lateral load-displacement curve, and energy dissipation capacity of the unstrengthened control wall, the increasing ratios were 110%, 120%, and 360%, respectively, for the walls strengthened with the individual GF grids, 140%, 130%, and 510%, respectively, for the walls strengthened with the individual steel bars, and 160%, 130%, and 840%, respectively, for the walls strengthened with the combination of steel bars and GF grids. The measured lateral load capacities of masonry walls strengthened with the developed technique were in relatively good agreement with the predictions by the equations proposed by Yang et al. Overall, the developed technique is quite promising in enhancing the seismic performance of unreinforced masonry walls.