• Title/Summary/Keyword: 벽면효과 보정

Search Result 16, Processing Time 0.022 seconds

Wind Tunnel Wall Interference Correction Method for Helicopter Rotor Tests with Closed and open Test Sections (헬리콥터 로터의 폐쇄형 및 개방형 풍동시험 벽면효과 보정기법 연구)

  • Lee, Hyeon-Jung;Jang, Jong-Youn;Lee, Seung-Soo;Kim, Beom-Soo;Song, Keun-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.621-627
    • /
    • 2008
  • Aerodynamic data measured in a wind tunnel has inevitable errors due to the presence of the wind tunnel walls. These unwanted interference effects must be corrected for the wall interference free aerodynamic data. Streamline curvature effects are caused by straightening of streamlines due to wind tunnel walls. Classical Glauert's correction method that is a standard method for fixed wing aircraft is not suitable for rotary wing aircraft. In this paper, Heyson's correction method of which wake model is compatible with rotors is used to correct the rotor shaft angle as well as the dynamic pressure. The results of Heyson's method are compared with Glauert's correction method.

Blockage-Correction Method for Unsteady Flows in a Closed Test-Section Wind Tunnel (폐쇄형 풍동 시험부 내의 비정상 흐름에 대한 Blockage 보정 기법 연구)

  • Gang, Seung-Hui;Gwon, O-Jun;An, Seung-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.67-74
    • /
    • 2006
  • An unsteady blockage-correction method utilizing wall pressure distribution on the test section has been developed for the wall interference correction of a closed test-section subsonic wind tunnel. The pressure distribution along the test section wall was decomposed into Fourier series and a quasi-steady method based on a measured-boundary-condition method was applied to each Fourier coefficient. The unsteady correction for a complete test period was accomplished by recombining each corrected terms. The present method was validated by appling computed unsteady flows over a cylinder and an oscillating airfoil in the test sections. The corrected results by the present method agreed well with free-air condition.

Blockage Correction Method for Separated Flows over an Aircraft in a Closed Test-Section Wind Tunnel (폐쇄형 풍동 시험부내의 항공기 실속 흐름에 대한 Blockage 보정 기법 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.42-49
    • /
    • 2005
  • A new blockage correction method has been developed for the wall interference correction of closed test-section subsonic wind tunnels based on the nonlinear relationship between separation blockage and separation drag. This method can be applied continuously from the linear lift-slope region to the highly nonlinear post-stall region by on-line processing. The present method was validated by comparing the results with a classical method based on the test results of a bluff body and a measured-boundary-condition method. It was shown that the present method is in good agreement with the measured-boundary-condition method, enabling better wall corrections than the bluff body method in both near-stall and post-stall regions.

Computational Fluid Dynamics Analysis of Wind Tunnel Test for Natural Laminar Flow Airfoil (자연층류 익형 풍동시험 전산유체해석)

  • Kim, Cheol-Wan;Lee, Yung-Gyo
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.27-30
    • /
    • 2008
  • Wall correction method for wind tunnel test is reviewed and applied to the numerical experimental results obtained at the wind tunnel condition. The corrected lift coefficient agrees well with the reference data generated from the grid having very far boundary However the corrected drag coefficient presents some deviation from the reference data.

  • PDF

A Study on Wall Interference Effect Around the Wind Turbine Airfoil (풍력터빈 에어포일 주위의 벽면효과에 관한 연구)

  • Cho, Hwan-Kee;Kang, Seung-Hee;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.485-491
    • /
    • 2012
  • The wall interference effects around the wind-turbine airfoil are experimentally investigated at low Reynolds numbers in a closed test-section wind tunnel. The test is performed at free-stream velocities from 10 to 31 m/s, which correspond to Reynolds numbers ranging from $1.5{\times}10^5$ to $4.6{\times}10^5$ based on chord of the airfoil. The blockage-area ratios, which is the ratio of the chord to the test-section width, are 27.8%, 38.5%, 41.7%, 45.5%, and 55.6%. The test results for the airfoil show that the transition point on the airfoil surface tends to move backward due to wall interference. The wall pressures for an adequate interference correction by a measured-boundary-condition method are desirable more than three times region of the chord before and after around the reference center.

A Study on Effective Correction of Internal Drag and Wall Interference Using Response Surface in Wind Tunnel Test (풍동시험에서 반응면을 이용한 내부 항력 및 벽면 효과의 효율적 보정방안 연구)

  • Kim, Junemo;Lee, Yeongbin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.637-643
    • /
    • 2019
  • Wind tunnel testing for flow-through model is necessary for performance prediction of an aircraft with air-breathing jet engine. Internal drag correction and wall correction are performed to acquire preciser wind tunnel test data. Many test runs are generally required to correct internal drag and wall interference in wind tunnel test. In this study we investigated more effective correction schemes using the response surface method. Even though the number of tests required for these schemes was much smaller than that for conventional methods, the differences between corrections using these schemes and conventional methods were similar level with the uncertainty of measurement except for the data near the boundaries.

A Comparative Study on the Aerodynamic Characteristics by Change of Shapes of the Light Sport Airplane (스포츠급 경항공기 형상 변화에 따른 공력특성 비교)

  • Choe, Yun-Seok;An, Eun-Hye;Lee, Gi-Hun;Jo, Dong-Hyeon;Gwon, Gi-Beom;Kim, Seung-Pil;Choe, Pil-Yeong;Park, Jin-Hwan;Kim, Sang-Ho
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.35-38
    • /
    • 2015
  • 본 연구에서는 스포츠급 경항공기 모형의 공력 특성을 공군사관학교 아음속 풍동에서 측정하였다. 풍동시험은 유속 40m/s에서 이전 모델과 최근 공력성능 향상을 위해 보완된 모델에 대해 비교 실험 수행하였으며, 정확한 데이터를 얻기 위하여 흐름각 효과, 벽면효과, 지지대 간섭효과를 보정하여 공력계수를 산출하였다. 실험 결과, 두 모델의 항력계수와 양력계수가 전체적으로 유사한 경향성을 보이나 고받음각에서의 양력특성의 차이가 발생하였다. 또한 실제 비행 시의 레이놀즈 수 유동을 모사하기 위하여 Trip strip의 영향에 대하여 실험하였다. 그 결과 Trip strip을 부착하였을 경우 항력계수가 증가하고 최소항력받음각이 낮아지는 결과를 획득하였다.

  • PDF

High resolution satellite image classification enhancement using restortation of buildin shadow and occlusion (건물 그림자와 폐색 보정을 통한 고해상도 위성영상의 분류정확도 향상)

  • Kim, Hye-Jin;Han, You-Kyung;Choi, Jae-Wan;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.13-17
    • /
    • 2009
  • 고해상도 위성영상의 분류 기술은 최근 가장 활발히 연구되고 있는 분야 중 하나로 텍스쳐(texture), NDVI, PCA 영상 등 다양한 전처리 정보들을 추출하고 이를 멀티스펙트럴 밴드와 조합하여 분류 정확도를 높이는 기술을 개발하는 연구들이 주를 이루고 있다. 고해상도 위성영상에서 건물의 그림자와 옆벽면의 폐색 지역은 개체 추출 및 분류를 방해하는 주된 요인이 되며, 다양한 형태와 분광특성을 갖는 개개의 건물은 자동 분류 과정을 통해 제대로 식별되지 않는다는 한계를 갖는다. 이에 본 연구에서는 KOMPSAT-2 단영상으로부터 효율적으로 건물 정보 및 토지피복을 분류하기 위하여, 추출된 건물 정보를 바탕으로 건물의 그림자와 폐색지역을 보정한 후 비건물 지역에 대한 분류를 수행하여 분류 정확도를 높이고자 하였다. 우선 삼각벡터구조 기반의 반자동 인터페이스를 이용하여 건물의 3차원 모델 및 그림자 영역을 추출하고 이로부터 추출된 그림자 영역을 효과적으로 보정하기 위해 반복 선형회귀 연산을 이용한 그림자 보정을 수행한 후 inpainting 기법을 건물 폐색영역 복원에 적용하여 영상의 품질을 향상시켰다. 이러한 과정을 통해 도심 지역의 영상 분석에 있어 가장 큰 오차를 일으키는 인공물의 그림자와 폐색에 의한 오차를 최소화한 후 분류에 적용하여 이를 보정 전 영상을 이용한 분류 결과와 비교하였다.

  • PDF

CFD ANALYSIS OF SUBSONIC AIRFOIL WIND TUNNEL TEST (아음속 익형 풍동시험 전산해석)

  • Kim, C.W.;Lee, Y.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.167-170
    • /
    • 2007
  • In the present paper, wall correction method is reviewed and applied to the numerical experimental results obtained at the wind tunnel condition. The corrected lift coefficient agrees well with the reference data generated from the grid having very far boundary. However the corrected drag coefficient presents some deviation from the reference data.

  • PDF

Geometric Distortion Compensation of Projector Image based on Equation of Straight Line (직선의 방정식을 기반으로 한 프로젝터 영상의 기하왜곡 보정)

  • Jung, Jung-Il;Cho, Jin-Soo
    • Journal of Internet Computing and Services
    • /
    • v.11 no.5
    • /
    • pp.27-35
    • /
    • 2010
  • In this paper, we propose a method that can compensate the geometric distortions of image caused from an arbitrary nonflat display surface(or wall) under the environment of portable overhead projector without a flat screen. In the proposed method, we first project a grid pattern to an arbitrary nonflat display surface and then derive an equation of straight line that represents the geometry relationship between the distorted grid pattern and the original grid pattern. Next, after determining the proper size of the original grid pattern according to the form of the display surface, we generate a compensation pattern from the derived equation of straight line, which can symmetrically compensate for the distorted image. Finally, we compensate for the geometric distortions of the projected image by segmenting the real image to be projected from portable overhead projector and prewarping it according to the compensation pattern. To evaluate the proposed method, we performed experiments of image compensation on inclined surface, bent surface and curved surface that are frequently occurred in the environment of portable overhead projector without a flat screen. From the experimental results, we found that the proposed method could be very effective in compensating for the general types of the geometric distortions of the projected images.