• Title/Summary/Keyword: 벽면주파수

Search Result 51, Processing Time 0.03 seconds

Development of a 3D Micro-cell Simulator for Radio Wave Propagation Analysis in Indoor Environments (실내 환경에서 전파(傳播)특성 분석을 위한 마이크로 셀용 3D 시뮬레이터 개발)

  • Lim, Joong-Soo;Son, Dong-Cheul;Chae, Gyoo-Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.283-288
    • /
    • 2013
  • In this study, we introduce a 3D micro-cell simulator for radio wave propagation analysis in indoor environments. Previous studies treat only the path loss between the transmitter and receiver in 2D geometry. We provide the simulation results of indoor propagation prediction based on various ITU-R Recommendations. Simulation results described here indicate that the low and high frequency bands give quite different characteristics in presented indoor geometry. The propagation loss as a function of distance has two distinct regions. It is similar to that occurring in free space within 5-20m of the transmitter, however, increases significantly as the electromagnetic waves become obstructed by the walls at distances further away in the next region.

Transmission and Reflection Characteristics Measurements at the 60GHz for the Various Obstacles (다양한 장애물에 대한 60GHz 대역에서의 투과 및 반사 특성 측정)

  • Song, Ki-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • This paper presents the reflection and transmission measurements conducted at the 60GHz suitable to provide a high speed wide band service. Mean received power and standard deviation are calculated and used to compare the characteristics of radio wave propagation to the various obstacles between transmitting and receiving antennas at the frequency. The results show that the transmitted signal strength by the steel door and copper plate are about 40dB lower than in free space, those by the rubber plate, glass and styroform are about 3dB lower than in free space. Also, the re(looted signal strengths at the 60 degree grazing angle show that in case by the partition is about 23dB lower, by the surface of a wall is about 6dB lower than by the copper plate. The presented results can be used for the design of 60 GHz picocell communication network that the reflected and transmitted waves affect to the service area.

Radio Path Loss and Angle of Arrival Measurements to the Radio Environments at 60GHz (60GHz 대역에서의 전파 환경별 경로손실 및 도래각 측정)

  • Song, Ki-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2233-2240
    • /
    • 2007
  • This paper presents the measured path loss exponents and standard deviations using measured data at 60GHz to analyze the propagation characteristics of millimeter wave bands having great demand for picocellular communications. In addition the angle of arrival(AOA) were measured to analyze the arrival direction of muitipath waves affecting the received signal strength. As results of analysis, the pathloss exponents in each environment are found to be lower than 2 for free space pathloss exponent. They were determined with the qualities of bottom materials affecting signal strength. The angles of arrival by multipath waves were different with the circumference structures between transmitter and receiver. That is, the multipath waves excluding direct and ground reflected wave were difficult to find in wide space such a gymnasium and playground, however the wall multipath waves were found to arrive at receiver in the corridor. The multipath waves at 60GHz can be known to hardly affect to the received signal strength because of weak signals compared with direct wave.

Interfacial fracture analysis of human tooth/composite resin restoration using acoustic emission (음향방출법을 이용한 치아/복합레진 수복재의 계면부 파괴해석)

  • Gu, Ja-Uk;Choi, Nak-Sam;Arakawa, Kazuo
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.45-51
    • /
    • 2009
  • The marginal integrity at the composite resin-tooth interface has been analyzed in real time through acoustic emission (AE) monitoring during the polymerization shrinkage of composite resin subjected to the light exposure. It was found that AE signals were generated by the polymerization shrinkage. Most AE hit events showed a blast type signal having the principal frequency band of 100-200kHz. Bad bonding states were indicated by many hit events in the initial curing period of 1 minute with high contraction rate. The quantity of hit events for the human molar dentin specimen was much less than that for the steel ring specimen but more than that for the PMMA ring specimen. The better the bonding state, the less the AE hit events. The AE characteristics were related with the tensile crack propagation occurring in the adhesive region between the composite resin and the ring substrate as well as the compressive behavior of the ring substrate, which could be used for a nondestructive characterization of the marginal disintegrative fracture of the dental restoration.

On the Errors of the Phased Beam Tracing Method for the Room Acoustic Analysis (실내음향 해석을 위한 위상 빔 추적법의 사용시 오차에 관하여)

  • Jeong, Cheol-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • To overcome the mid frequency limitation of geometrical acoustic techniques, the phased geometrical method was suggested by introducing the phase information into the sound propagation from the source. By virtue of phase information, the phased tracing method has a definite benefit in taking the interference phenomenon at mid frequencies into account. Still, this analysis technique has suffered from difficulties in dealing with low frequency phenomena, so called, wave nature of sound. At low frequencies, diffraction at corners, edges, and obstacles can cause errors in simulating the transfer function and the impulse response. Due to the use of real valued absorption coefficient, simulated results have shown a discrepancy with measured data. Thus, incorrect phase of the reflection characteristic of a wall should be corrected. In this work, the uniform theory of diffraction was integrated into the phased beam tracing method (PBTM) and the result was compared to the ordinary PBTM. By changing the phase of the reflection coefficient, effects of phase information were investigated. Incorporating such error compensation methods, the acoustic prediction by PBTM can be further extended to low frequency range with improved accuracy in the room acoustic field.

Skin-Friction Drag Reduction in Wake Region by Suction Control on Horseshoe Vortex in front of Hemisphere (반구 전방에 생성된 말굽와류 흡입제어에 의한 후류영역 마찰저항 감소에 관한 연구)

  • Koo, Bonguk;Kang, Yong-Duck
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.795-801
    • /
    • 2019
  • The aim of this study was to investigate the possibility of the skin-friction reduction by vortex control. A vortical system such as a horseshoe vortex, a hairpin vortex, and a wake region was induced around a hemisphere attached on a Perspex flat plate in the circulating water channel. Hairpin vortices were developed from the wake region and horseshoe vortices were formed by an adverse pressure gradient in front of the hemisphere. The horseshoe vortices located on the flank of the hemisphere induced a high momentum flow in the wake region by the direction of their vorticity. This process increased the frequency of the hairpin vortices as well as the frictional drag on the surface of the wake region. To reduce the skin-friction drag, suction control in front of the hemisphere was applied through a hole. Flow visualization was performed to optimize the free-stream velocity, size of the hemisphere, and size of the suction hole. Once the wall suction control mitigated the strength of the horseshoe vortex, the energy supplied to the wake region was reduced, causing the frequency of the hairpin vortex generation to decrease by 36.4 %. In addition, the change in the skin-friction drag, which was measured with a dynamometer connected to a plate in the wake region, also decreased by 2.3 %.

Characteristics of Shear Waves in Controlled Low Strength Material with Curing Time (양생시간에 따른 유동성 채움재의 전단파 특성)

  • Han, Woojin;Lee, Jong-Sub;Byun, Yong-Hoon;Cho, Samdeok;Kim, Juhyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.13-19
    • /
    • 2016
  • The ultrasonic waves for monitoring concrete materials have been used to investigate the setting and hardening process of concrete. This paper presents the application of bender elements for monitoring the hardening properties of Controlled Low Strength Material (CLSM) and the characterization of shear waves in CLSM according to curing time. To ensure the early age properties and flow, the CLSM consists of CSA cement, sand, silt, water, fly ash, and accelerator. In addition, three different type specimens according to fine contents are mixed. A couple of bender elements are installed at the wall of measurement cell and the CLSM specimen are prepared at the measurement cell for 28 days. Experimental results show that the resonant frequency and shear wave velocities increase with an increase in the curing time, regardless of the fine contents. Up to ten hours, the amplitudes of shear waves also increase, and the resonant frequency and shear wave velocities at the same time increase as the fine contents increase. The shear wave measurement technique using the bender elements may be effectively used to evaluate the hardening properties of CLSM along the curing time.

Radio Propagation Characteristics in Subway Tunnel at 2.65 GHz (지하철 터널 환경에서 2.65 GHz 대역신호의 전파전파 특성)

  • Choi Myung-Sun;Kim Do-Youn;Jo Han-Shin;Mun Cheol;Yook Jong-Gwan;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.541-548
    • /
    • 2005
  • The research deals with the prediction and the measurement of electromagnetic wave propagation in rectangular shaped tunnels at f=2.65 GHz. The received power level was measured in the straight and the curved tunnel by using a spectrum analyzer and Satellite DMB mobile phone. Thus we have gotten the data for two cases, the straight and the curved tunnel whose radius is 300m. In addition, the prediction of wave propagation was conducted based on the ray-launching method, in same tunnel where measurement was performed. A good agreement of the measured and the predicted path loss could be confirmed. The measured path loss shows a marked difference in propagation loss: the path-loss exponent, 3.21, and 3.98, for a straight and a curved tunnel, respectively. The reason that path-loss exponent is high in a curved tunnel is that there is no direct wave but only the reflected waves, which attenuates rapidly with distance due to multiple reflections. Also the predicted path loss shows path loss exeponent, 3.2 and 3.95, for a straight and a curved tunnel which are similar to the simulation results.

Characteristics of Beam-tilting Slot Array Waveguide Antennas for DBS Reception (DBS 수신용 빔 틸트형 슬롯 어레이 도파관 안테나의 특성)

  • Min, Gyeong-Sik;Kim, Dong-Cheol;Arai, Hiroyuki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.3
    • /
    • pp.140-149
    • /
    • 2002
  • This paper describes the characteristics of beam-tilting slot away waveguide antennas for mobile DBS reception. As a basic study of slotted waveguide array, design for 16 slot elements located on a broad-wall waveguide is considered. Design parameters such as slot length, space between each slot and cross slot angle of antennas with the beam-tilting characteristics are calculated by method of moments. Based on these results, the radiation waveguide antennas with 16-element $\times$16-array are designed and fabricated. The measured main beam direction angles of the fabricated antennas are 48$^{\circ}$to 50$^{\circ}$depending on the measured frequencies and it shows good agreement with prediction. The measured 3 dB beam width of elevation pattern is about 13$^{\circ}$, and the axial ratio and the gain measured at DBS band are observed 2.8 dB below and 24 dBi above, respectively. In order to evaluate a performance of the fabricated waveguide planar antenna, it is combined with the satellite tracking control system and the field performance test of antenna mounted on a mobile vehicle is carried out at highway. During the measurement, it was possible to watch television without a break signal in a driving vehicle and an excellent performance of the proposed antennas was demonstrated.

A study on the location of microphones in measurement considering the frequency characteristics of elevator noise in households (세대 내 승강기 소음 주파수특성을 고려한 측정 시 마이크로폰 위치에 관한 연구)

  • Min-Woo Kang;Yang-Ki Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.124-132
    • /
    • 2023
  • When the building becomes high, the number of households increases and they are adjacent to the elevator. So, frequency of use of elevators will increase. Elevator noise is bound to increase in the future. However, there are currently no legal standards for elevator noise or measurement and evaluation methods that can clearly measure elevator noise in Korea. Although some methods for measuring elevator noise are presented in KS F ISO 16032, this standard is not a standard established for elevator noise. It is a standard that integrates the overall measurement method of building equipment and equipment, and the position of the microphone is selected by the experimenter during measurement. Elevator noise is characterized by a low sound pressure level as the noise in the mid-low frequency band is important. However, even today, complaints from residents about elevator noise are increasing. In this study, the position of the microphone that can most sensitively pick up the elevator noise when measuring the elevator noise was studied. According to the distance from the wall and the height from the floor, a total of 9 microphone positions were measured and analyzed. As a result of the experiment, it was confirmed that the elevator noise has a very high influence in the 63 Hz band. The measured value at the center point was identified as a factor that lowered the overall elevator noise level value.