• Title/Summary/Keyword: 벤토나이트

Search Result 433, Processing Time 0.02 seconds

Primer Evaluation for the Detection of Toxigenic Microcystis by PCR (독소 생성 Microcystis 검출을 위한 PCR primer의 평가)

  • 이현경;김준호;유순애;안태석;김치경;이동훈
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.166-174
    • /
    • 2003
  • Microcystin produced by cyanobacteria in surface waters, such as eutrophic lake and river, is a kind of serious environmental problems due to its toxicity to human and wild animals. Microcystin is synthesized nonribosomally by the large modular multi-functional enzyme complex known as microcystin synthetase encoded by the mcy gene cluster. Amplification of mcy genes by PCR from cultures and environmental samples is a simple and efficient method to detect the toxigenic Microcystis. In order to evaluate primers designed to detect toxic microcystin-producing strains, 17 cyanobacterial strains and 20 environmental samples were examined by PCR with 7 pairs of primers. Some microcystin-producing cyanobacteria were not detected with FAA-RAA, TOX4F-TOX4R and FP-RP primers. The fragment of unexpected size was amplified with NSZW2-NSZW1 primers in Microcystis strains isolated from the lakes in Korea. TOX1P-TOX1F primers failed in amplification of toxin-producing strains. Only MSF-MSR and TOX2P- TOX2F primers amplified the fragments of mcy genes from 11 strains of microcystin-producing Microcystis. The water samples taken from 20 lakes in Korea were analyzed by PCR using each of the primers. In all the water samples, cyanobacteria capable of producing microcystin were detected by the PCR with TOX2P-TOX2F primers. These results indicate that TOX2P-TOX2F primers are better than the other primers for detection of microcystin-producing Microcystis strains in Korea. The nucleotide sequences of mcy gene in Microcystis aeruginosa NIER10010 suggest genetic diversity of Korean isolates.

Consistency Analysis of Intermediate Soil Based on the Fines Contents (세립분 함유율에 따른 중간토의 컨시스턴시 분석)

  • Oh, Sewook;Bae, Wooseok;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.6
    • /
    • pp.17-26
    • /
    • 2021
  • Ground investigation and result analysis generally used to examine all sorts of structures' subsidence or stability can be classified into sandy soil and cohesive soil, and analysis on the liquid limit of soil is utilized to evaluate the physical properties of ground and types or technical behavior of soil. The most widely used method to analyze liquid limit is Casagrande with which liquid limit can be calculated relatively easily; however, it is fairly difficult to apply it to soil equipped with intermediate properties. Therefore, concerning the properties of soil having the intermediate properties of sedimentary ground, this researcher mixed the clay from Yangsan, Gwangyang, and Busan with sandy soil to make intermediate soil and then carried out the test of consistency limit and also evaluated applicability by using the suggested formula of consistency revision. The sample of intermediate soil was the mixture of clay and sandy soil, and to produce intermediate soil, the content (Fc) of fine soil was applied as 50%, 75%, or 100%. Regarding the physical properties of intermediate soil, to maintain the properties of clay in the natural state, bentonite was added at a fixed rate for controlling the properties of clay, and then, consistency was analyzed. By adopting the formula of consistency revision suggested in advanced research, this author analyzed consistency based on the experiment and consistency based on the suggested formula of revision. Also, about intermediate soil collected at the site, consistency based on the experiment and consistency based on the suggested formula of revision were analyzed comparatively, and about intermediate soil collected, this researcher analyzed particle size and calculated the content (Fc) of fine soil to analyze intermediate soil in diverse conditions. Moreover, about intermediate soil collected at the site, the suggested formula of consistency revision was applied to calculate the compression index, and the compression index based on the experiment and the compression index based on the suggested formula were analyzed comparatively to evaluate the applicability of the suggested formula.

Review for Mechanisms of Gas Generation and Properties of Gas Migration in SNF (Spent Nuclear Fuel) Repository Site (사용 후 핵연료 처분장 내 가스의 발생 기작 및 거동 특성 고찰)

  • Danu Kim;Soyoung Jeon;Seon-ok Kim;Sookyun Wang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.167-183
    • /
    • 2023
  • Gases originated from the final SNF (spent nuclear fuel) disposal site are very mobile in the barrier and they may also affect the migration of radioactive nuclides generated from the SNF. Mechanisms of gas-nuclide migration in the multi-barrier and their influences on the safety of the disposal site should be understood before the construction of the final SNF disposal site. However, researches related to gas-nuclide coupled movement in the multi-barrier medium have been very little both at home and abroad. In this study, properties of gas generation and migration in the SNF disposal environment were reviewed through previous researches and their main mechanisms were summarized on the hydrogeological evolution stage of the SNF disposal site. Gas generation in the SNF disposal site was categorized into five origins such as the continuous nuclear fission of the SNS, the Cu-canister corrosion, the oxidation-reduction reaction, the microbial activity, and the inflow from the natural barriers. Migration scenarios of gas in porous medium of the multi-barrier in the SNF repository site were investigated through reviews for previous studies and several gas migration types including ① the free gas phase flow including visco-capillary two-phase flow, ② the advection and diffusion of dissolved gas in pore water, ③ dilatant two-phase flow, and ④ tensile fracture flow, were presented. Reviewed results in this study can support information to design the further research for the gas-nuclide migration in the repository site and to evaluate the safety of the Korean SNF disposal site in view points of gas migration in the multi-barrier.