Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.829-831
/
2022
포인트 클라우드 콘텐츠는 움직임이 있는 콘텐츠를 연속된 프레임에 3 차원 위치정보와 대응하는 색상으로 기록한 데이터이다. 강체 포인트 클라우드 데이터를 정합하기 위해서는 고전적인 방법이지만 강력한 ICP 정합 알고리즘을 사용한다. 그러나 국소적인 모션 벡터가 있는 비 강체 포인트 클라우드 콘텐츠는 기존의 ICP 정합 알고리즘을 통해서는 프레임 간 정합이 불가능하다. 본 논문에서는 비 강체 포인트 클라우드 콘텐츠를 지역적 확률 모델을 사용하여 프레임 간 포인트의 쌍을 맺고 개별 포인트 간의 모션벡터를 구해 정합 하는 방법을 제안한다. 정합 대상의 데이터를 2 차원 투영을 하여 구조화시키고 정합 할 데이터를 투영하여 후보군 포인트를 선별한다. 선별된 포인트에서 깊이 값 비교와 좌표 및 색상 유사도를 측정하여 적절한 쌍을 찾아준다. 쌍을 찾은 후 쌍으로 모션 벡터를 더하여 정합을 수행하면 비 강체 포인트 클라우드 콘텐츠 데이터에 대해서도 정합이 가능해진다.
Personal verification using finger-knuckle-print(FKP) uses lines and creases at the finger-knuckle area, so the orientation information of texture is an important feature. In this paper, we propose an effective FKP verification method which extracts keypoints using SIFT algorithm and matches the keypoints by vector similarity. The vector is defined as a direction vector which connects a keypoint extracted from a query image and a corresponding keypoint extracted from a reference image. Since the direction vector is created by a pair of local keypoints, the direction vector itself represents only a local feature. However, it has an advantage of expanding a local feature to a global feature by comparing the vector similarity among vectors in two images. The experimental results show that the proposed method is superior to the previous methods based on orientation codes.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.5
/
pp.960-966
/
2017
In this paper, we proposed an algorithm that can extract lesion by inputting a medical image. Feature points are extracted using SIFT algorithm to extract genetic training of medical image. To increase the intensity of the feature points, the input image and that raining image are matched using vector similarity and the lesion is extracted. The vector similarity match can quickly lead to lesions. Since the direction vector is generated from the local feature point pair, the direction itself only shows the local feature, but it has the advantage of comparing the similarity between the other vectors existing between the two images and expanding to the global feature. The experimental results show that the lesion matching error rate is 1.02% and the processing speed is improved by about 40% compared to the case of not using the feature point intensity information.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2005.11a
/
pp.182-185
/
2005
스테레오 영상에서 동일점을 찾는 과정은 스테레오 비전 시스템의 전체 성능에 가장 중요한 영향을 미치는 요소이다. 특히 동일점을 찾기 위해 두 화소의 유사도를 측정하는 많은 방법들이 있으나 기존의 대부분의 연구에서는 주로 화소의 밝기값이나 화소의 그레디어트 크기 등과 같이 한 두 가지의 특징값에 기초하여 유사도를 측정한다. 본 연구에서는 다수의 특징 요소를 이용하여 정합하는 다차원특징벡터 정합의 성능을 향상시키는 효과적인 정합 창틀 구현 방법을 제안한다. 깊이 불연속이 존재하는 항공영상을 실험에 사용하였으며 깊이 불연속에 강건한 정합 성능을 보임을 실험 결과를 통해 확인할 수 있었다.
Journal of the Korea Society of Computer and Information
/
v.10
no.2
s.34
/
pp.1-10
/
2005
In this Paper, we propose a new block matching a1gorithm that extracts motion vectors from consecutive range data. The proposed method defines a matching metric that integrates intensity, hue, and range. Our algorithm begins matching with a small matching template. If the matching degree is not good enough, we slightly expand the size of a matching template and then repeat the matching process until our matching criterion is satisfied or the predetermined maximum size has been reached. As the iteration proceeds, we adaptively adjust weights of the matching metric by considering the importance of each feature. In the experiments, we show that our block matching approach can work as a promising solution by comparing the proposed method with previously known method in terms of performance.
영상 정합은 물리적으로 유사한 영상 내의 영역들을 기하학적으로 일치시키는 처리이며 지형 정보, 영상검색, 원격탐사, 의료영상 등의 많은 영상처리 응용에서 사용된다. 영상 정합에 관한 연구는 주로 회전, 크기, 위치 등의 인자 추출에 소요되는 시간과 정확성에 중점을 두어 왔다. 본 연구에서는 영상의 특징 점들에 대한 일차 고유벡터의 방향 분포를 히스토그램으로 표현하고 이를 비교 분석함으로써 정합하는 방법을 제안한다. 일차 고유벡터를 이용함으로써 특징 묘사의 단순성을 제공하고. 히스토그램을 이용하여 정합 인자를 미리 추정함으로써 정합 인자 추출 시 목적함수의 연산에 소요되는 비용을 현저하게 줄였다. 본 연구의 결과를 평가하기 위해 제안한 방식을 일반 영상과 ICG(IndoCyanine Green)망막 영상에 적용한 결과를 보여주고 목적함수의 연산횟수와 시간 복잡도를 기존의 방법들과 비교하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.9
/
pp.2007-2012
/
2011
To reduce huge computation in the block matching, this paper proposes a fast block matching algorithm which limits search points in the search area. On the basis of two facts that most motion vectors are located in central part of search area and matching error is monotonic decreasing toward the best similar block, the proposed algorithm moves a matching pattern between steps by the one pixel, predicts the motion direction for the best similar block from similar blocks decided in previous steps, and limits movements of search points to ${\pm}45^{\circ}C$ on it. As a result, it could remove the needless search points and reduce the block matching computation. In comparison with the conventional similar algorithms, the proposed algorithm caused the trivial image degradation in images with fast motion but kept the equivalent image quality in images with normal motion, and it, meanwhile, reduced from about 20% to over 67% of the their block matching computation.
기존의 블록 정합 알고리즘인 FS(Full Search) 알고리즘은 정확한 움직임 벡터를 구할 수 있으나 요구되는 계산량이 많다. 반면에 국부 탐색을 하는 고속 블록 정합 알고리즘은 FS보다 빠른 탐색을 할 수 있으나 FS 보다 정합 오차가 크다. 본 연구는 전역탐색을 하는 유전자 알고리즘에 빠른 탐색을 하는 블록 정합 알고리즘인 NTSS(New Three Ste Search)알고리즘을 제안한다. 제안한 방법에서 각 염색체는 움직임 벡터를 표현하며 초기 염색체는 탐색 공간의 중심 탐색점 가까이에 고정적으로 발생시키고 각 염색체는 MSE(Mean Square Error)값으로 평가된다. 평가된 염색체 중 작은 MSE값을 가지는 염색체가 NTSS의 탐색점 수만큼 다음 세대의 탐색점으로 선택된다. 선택된 염색체는 세대를 거치면서 돌연변이 연산과 교배연산이 행해지고 이 때 돌연변이 연산의 크기는 NTSS의 탐색 단계 크기가 된다. 제안한 세대 수 만큼 반복 후 최소의 MSE 값을 가지는 유전자가 해당 블록의 움직임 벡터가 된다. 시뮬레이션 결과 제안한 방법을 가장 우수한 성능을 가지는 FS와 유사한 MSE 값을 얻을 수 있었고 동시에 FS에서 요구되는 계산량에 비해 많은 계산량을 줄일 수 있었다.
The Journal of Korean Institute of Next Generation Computing
/
v.15
no.5
/
pp.64-74
/
2019
Although a non-rigid registration has high demands in clinical practice, it has a high computational complexity and it is very difficult for ensuring the accuracy and robustness of registration. This study proposes a method of applying a non-rigid registration to 3D magnetic resonance images of brain in an unsupervised learning environment by using a deep-learning network. A feature vector between two images is produced through the network by receiving both images from two different patients as inputs and it transforms the target image to match the source image by creating a displacement vector field. The network is designed based on a U-Net shape so that feature vectors that consider all global and local differences between two images can be constructed when performing the registration. As a regularization term is added to a loss function, a transformation result similar to that of a real brain movement can be obtained after the application of trilinear interpolation. This method enables a non-rigid registration with a single-pass deformation by only receiving two arbitrary images as inputs through an unsupervised learning. Therefore, it can perform faster than other non-learning-based registration methods that require iterative optimization processes. Our experiment was performed with 3D magnetic resonance images of 50 human brains, and the measurement result of the dice similarity coefficient confirmed an approximately 16% similarity improvement by using our method after the registration. It also showed a similar performance compared with the non-learning-based method, with about 10,000 times speed increase. The proposed method can be used for non-rigid registration of various kinds of medical image data.
본 논문에서는 탐색 영역과 특징의 가중치를 동적으로 조절하여 블록 단위의 움직임 벡터를 추출하는 활동적 블록 정합 알고리듬을 제안한다. 본 논문에서 제안하는 알고리듬은 탐색 영역의 중심 위치를 결정하기 위해 시간에 따른 블록의 동작 변화는 작다고 가정한다. 그리고 탐색 영역의 크기는 공간적으로 인접한 블록들의 신뢰도에 따라 조절된다. 또한 본 논문에서 제안하는 알고리듬은 다중 특징을 사용하는 블록 정합 알고리듬으로 블록 정합 시 특징의 기여 정도를 나타내는 가중치를 블록 안에서 각 특징이 가지는 구분력에 따라 자동으로 설정하는 정합 유사 함수를 사용한다. 실험 결과는 본 논문에서 제안한 블록 정합 알고리듬이 기존의 알고리듬 보다 정확하게 움직임 벡터를 추출함을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.