• Title/Summary/Keyword: 베이크아웃 시험

Search Result 4, Processing Time 0.023 seconds

잔류가스분석기를 활용한 베이크아웃 시험 종료조건 수립 검토 결과

  • Park, Seong-Uk;Seo, Hui-Jun;Jo, Hyeok-Jin;Im, Seong-Jin;Son, Eun-Hye;Mun, Gwi-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.103.1-103.1
    • /
    • 2015
  • 위성체 개발에 있어서 지상에서 위성체의 부품에 대한 고온($85^{\circ}C$ 이상)과 고진공($5.0{\times}10-3Pa$ 이하)의 상태를 모사하여 오염물질을 제거하는 베이크아웃 시험이 필수적이다. 일반적으로 베이크아웃 시험의 종료여부는 TQCM (Thermoelectric Quartz Crystal Microbalance)을 이용한 탈기체(outgassing)의 흡착률을 측정하여 결정한다. 측정된 흡착률을 통해 시험 대상 표면에서 발생하는 탈기체량을 추정할 수 있으며, 결국 시험 대상의 우주 부품으로써의 적합성을 판단할 수 있다. TQCM을 적용하지 못하는 경우, 베이크아웃 시험 종료여부를 판단하기 위해 잔류가스분석기(Residual Gas Analyzer: RGA)를 활용하는 것을 고려하였다. 베이크아웃 시험 중 잔류가스분석기를 활용하여 시편에서 방출되는 오염물질을 측정하였으며, 그 중 측정량이 가장 많은 40-45 amu 범위의 측정값 추이를 관찰하여, 베이크아웃 시험 종료조건 수립 가능성을 검토하였다.

  • PDF

Domestic Construction of a Large Thermal Vacuum Chamber for Space Environment Simulation (우주환경모사를 위한 대형열진공챔버 국산화 구축)

  • Cho, Hyok-Jin;Moon, Guee-Won;Seo, Hee-Jun;Lew, Sang-Hoon;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.64-73
    • /
    • 2007
  • A Large thermal vacuum chamber (LTVC) for space environment simulation on large satellites was successfully developed and constructed by KARI (Korea Aerospace Research Institute) in Korea with a local company. This chamber has an effective diameter of 8 meters and depth of 10 meters, and is composed of vacuum system, thermal control system, and anti-vibration system. Temperature below $-190^{\circ}C$ is maintained over the thermal shroud wrapping a satellite under $3.7{\times}10^{-5}Pa$ ($5{\times}10^{-7}torr$) vacuum level, and optical test can be done in this chamber by seismic mass with $10^{-5}g_{rms}$ or lower vibration level. In addition, the shroud temperature can be increased up to $123^{\circ}C$ using halogen lamps. Chamber control program based on PLC (Programmable Logic Controller) could control this large thermal vacuum chamber automatically.

  • PDF

A Study on the Seasonal Survey of the Indoor Air Quality in New Apartment Houses (신축 공동주택의 계절별 실내공기질 실측조사에 관한 연구)

  • Chun, Chu-Young;Kim, Gil-Tae;Hwang, Gi-Huen
    • Land and Housing Review
    • /
    • v.4 no.4
    • /
    • pp.417-424
    • /
    • 2013
  • The purpose of this study was to investigate the characteristics of the indoor air quality by season. The surveyed houses were 48 new apartment complex in 2012 across the country. The houses were carried out the bakeout before the test. The measuring method was "Indoor air quality testing standards process" and the measured items were formaldehyde, benzene, toluene, ethylbenzene, xylene, styrene average emissions. All the items were more emitting during the summer. From June to September the average concentration of formaldehyde emission was higher than other seasons. The average emissions of benzene concentrations in all seasons were released in small quantities. Average emissions of toluene and ethylbenzene concentration from April to August showed slightly higher emissions. Xylene and styrene concentration showed the highest emissions at April, but without large deviations throughout the year.

Space Business and Applications of Vacuum Technology (우주개발과 진공기술의 응용)

  • Lee, Sang-Hoon;Seo, Hee-Jun;Yoo, Seong-Yeon
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.270-277
    • /
    • 2008
  • Vacuum is any air or gas pressure less than a prevailing pressure in an environmental or, specifically, any pressure lower than the atmospheric pressure and is used by a wide variety of scientists and engineering - including clean environment, thermal insulation, very long mean free path, plasma, space simulation[1]. The space environment is characterized by such a severe condition as high vacuum, and very low and high temperature. Since a satellite will be exposed to such a space environment as soon as it goes into its orbit, space environmental test should be carried out to verify the performance of the satellite on the ground under the space environmental conditions. A general and widely used method to simulate the space environment is using a thermal vacuum chamber which consists of vacuum vessel and thermally controlled shroud. As indicated by name of vacuum chamber, the vacuum technology is applied to design and manufacture of the thermal vacuum chamber. This paper describe the vacuum technology which is applied to space business.