• 제목/요약/키워드: 베이지안 확률 모형

검색결과 100건 처리시간 0.025초

베이지안 방법을 이용한 정상성 및 비정상성 GEV모형의 불확실성 비교 연구 (Comparison Study of Uncertainty between Stationary and Nonstationary GEV Models using the Bayesian Inference)

  • 김한빈;주경원;정영훈;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.298-298
    • /
    • 2016
  • 최근 기후변화의 영향으로 시간에 따라 자료 및 통계적 특성이 변하는 비정상성이 다양한 수문자료에서 관측됨에 따라 비정상성 빈도해석에 대한 연구가 활발히 진행되고 있다. 비정상성 빈도해석에 사용되는 비정상성 확률 모형은 기존의 매개변수를 시간에 따라 변하는 공변량이 포함된 함수의 형태로 나타내기 때문에, 정상성 확률 모형에 비해 매개변수의 개수가 많으며 복잡한 형태를 가지게 된다. 따라서 본 연구에서는 비정상성 고려 시 모형이 복잡해짐에 따라 매개변수 및 확률 수문량의 불확실성이 어떻게 변하는지 알아보고자 하였다. 베이지안 방법은 매개변수 추정 및 확률 수문량의 산정 뿐 아니라 이에 대한 불확실성을 정량화할 수 있는 방법 중 하나이다. 따라서 베이지안 방법에서 매개변수 추정에 주로 쓰이는 Monte Carlo Markov Chain (MCMC) 방법 중 하나인 Metropolis-Hastings 알고리즘을 이용하여 정상성 및 비정상성 GEV모형에 대한 매개변수 및 확률수문량의 사후분포를 산정하였다. 산정된 사후분포의 사후구간을 통해 각 모형의 불확실성을 정량화하였으며, 계산된 불확실성의 비교를 통해 모형의 복잡성이 불확실성에 미치는 영향을 평가하였다.

  • PDF

부분 베이즈요인을 이용한 K개로 로그정규분포의 상등에 관한 베이지안 다중검정 (Bayesian Testing for the Equality of K-Lognormal Populations)

  • 문경애;김달호
    • 응용통계연구
    • /
    • 제14권2호
    • /
    • pp.449-462
    • /
    • 2001
  • 베이지안 다중 검정방법(multiple hypothesis test)은 여러 통계모형에서 성공적인 결과를 주는 것으로 알려져있다. 일반적으로, 베이지안 가설검정은 고려중인 모형에 대한 사후확률을 계산하여 가장 높은 확률은 갖는 모형을 선택하기 때문에 귀무가설의 기각여부에만 관심을 가지는 고전적인 분산분석 검정과는 달리 좀 더 구체적인 모형을 선택할 수 있는 장점이 있다. 이 논문에서는 독립이면서 로그정규분포를 따르는 K($\geq$3)개 모집단의 모수에 대한 가설 검정방법으로 O’Hagan(1995)이 제안한 부분 베이즈 요인을 이용한 베이지안 방법을 제안한다. 이 때 모수에 대한 사전분포로는 무정보적 사전분포를 사용한다. 제안한 검정 방법의 유용성을 알아보기 위하여 실제 자료의 분석과 모의 실험을 이용하여 고전적인 검정방법과 그 결과를 비교한다.

  • PDF

생물/보건/의학 연구를 위한 비모수 베이지안 통계모형 (Nonparametric Bayesian Statistical Models in Biomedical Research)

  • 노희상;박진수;심규석;유재은;정연승
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.867-889
    • /
    • 2014
  • 비모수 베이지안 통계 모형은 그 유연성과 계산의 편리성으로 인해 최근 다양한 분야에서 응용되고 있는데, 본 논문에서는 생물/의학/보건 연구에서 사용되는 비모수 베이지안 통계 모형에 대해서 개괄하였다. 본 논문에서는 비모수 베이지안 통계 모델링에서 핵심적으로 사용되는 확률모형들을 소개하고, 다양한 예제들을 통하여 그 모형들이 어떻게 사용되는지 이해를 돕도록 하였다. 특별히, 논의된 예제들은 모수적 통계 모형으로 고찰하기에는 한계가 있는 연구가설들을 포함하고 있어 모수적 모형의 한계점을 지적하고 비모수적 베이지안 모형의 필요성을 강조하는 것들로 정하였다. 크게 확률밀도함수 추정, 군집분석, 임의효과 분포의 추정, 그리고 회귀분석의 4가지 주제로 분류하여 살펴보았다.

무관질문형 다지확률응답모형에서의 베이즈 선형추정량에 관한 연구 (A Bayes Linear Estimator for Multi-proprotions Randomized Response Model)

  • 박진우
    • 응용통계연구
    • /
    • 제6권1호
    • /
    • pp.53-66
    • /
    • 1993
  • 다지확률응답모형인 경우에 대한 베이지안 접근방법을 연구하였다. O'Hagan (1987)의 베이 즈 선형추정량을 다지확률 응답모형의 경우로 확장하였다. 한편 수치비교방법에 의해 새로 이 연구된 베이즈 선형 추정량과 기존의 최대우도추정량과의 효율을 비교해 보았다. 이때 베이지안 방법의 사전분포로는 Dirichlet 분포를 사용하였다.

  • PDF

제한조건이 있는 선형회귀 모형에서의 베이지안 변수선택 (Bayesian Variable Selection in Linear Regression Models with Inequality Constraints on the Coefficients)

  • 오만숙
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.73-84
    • /
    • 2002
  • 계수에 대한 부등 제한조건이 있는 선형 회귀모형은 경제모형에서 가장 흔하게 다루어지는 것 중의 하나이다. 이는 특정 설명변수에 대한 계수의 부호를 음양 중 하나로 제한하거나 계수들에 대하여 순서적 관계를 주기 때문이다. 본 논문에서는 이러한 부등 제한이 있는 선형회귀 모형에서 유의한 설명변수의 선택을 해결하는 베이지안 기법을 고려한다. 베이지안 변수선택은 가능한 모든 모형의 사후확률 계산이 요구되는데 본 논문에서는 이러한 사후확률들을 동시에 계산하는 방법을 제시한다. 구체적으로 가장 일반적인 모형의 모수에 대한 사후표본을 깁스 표본기법을 적용시켜 얻은 후 이를 이용하여 모든 가능한 모형의 사후확률을 계산하고 실제적인 자료에 본 논문에서 제안된 방법을 적용시켜 본다.

베이지안 네트워크를 이용한 전자상거래 고객들의 성향 분석 (Analysis of Web Customers Using Bayesian Belief Networks)

  • 양진산;장병탁
    • 한국지능시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.16-21
    • /
    • 2001
  • 전자 상거래에서 고객의 성향을 이해하기 위해서는 일반적으로 판매 실무에서의 경험과 전문적인 지식을 필요로 하게 된다. 데이터 마이닝은 고객들에 대한 데이터의 분석을 통해서 이러한 성향들을 알아내는 것을 목표로 한다. 베이지안 네트워크는 DAG(Directed Acyclic Graph)를 이용하여 데이터의 구조를 시각적으로 표현하여 주는 확률모형으로 변수사이의 종속관계를 밝히고 데이터 마이닝의 기법으로 이용할 수 있다. 본 논문에서는 베이지안 네트워크를 사용하여 전자 상거래 고객들의 성향을 분석하기 위한 방법을 제시한다. 또한 고객성향에 대한 주요 요인을 분석하기 위해 Discriminant 모형을 이용하고 그 유용성을 다른 방법들과 비교하였다.

  • PDF

토빗회귀모형에서 베이지안 구간추정 (Bayesian Interval Estimation of Tobit Regression Model)

  • 이승천;최병수
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.737-746
    • /
    • 2013
  • Tobin (1958)에 의해 처음 소개된 절단 회귀모형에서 베이지안 추정은 최대가능도 추정보다 실제값에 가까운 것으로 알려져 있으나 베이지안 방법론이 구간추정 문제에 있어서도 성공적으로 작동할 수 있을 지에 대해서는 알려진 바가 없다. 일반적으로 베이지안 방법론에서 사전분포는 분석자의 사전정보를 반영하기 때문에 주관적인 분석이 될 수 밖에 없는데, 이렇게 주관적인 분석에서는 빈도학파들이 요구하는 기준을 따르기 어렵다. 그러나 무정보사전분포는 때때로 빈도학파적 특성을 갖는 베이지안 추론을 가능하게 한다. 본 연구에서는 절단 회귀모형에서 무정보사전분포에 의한 베이지안 신뢰구간의 빈도학파적 특성을 살펴보고 최대가능도 추정 신뢰구간과 포함확률을 비교한다. 이를 통해 최대가능도 추정의 표준오차가 과소 추정되고 있음 밝힌다.

데이터마이닝의 베이지안 망 기법을 이용한 교통수단선택 모형의 설계 및 구축 (Design and Implementation of Travel Mode Choice Model Using the Bayesian Networks of Data Mining)

  • 김현기;김강수;이상민
    • 대한교통학회지
    • /
    • 제22권2호
    • /
    • pp.77-86
    • /
    • 2004
  • 데이터마이닝 (Data Mining)은 대용량의 데이터에 존재하는 관계, 패턴, 규칙 등을 효율적으로 탐색하여 이를 모형화함으로써, 유용한 정보로 추출 변환하는 일련의 과정이다. 특히 베이지안 망 (Bayesian Network)은 신경망, 유전자알고리즘 퍼지이론 등과 더불어 데이터마이닝의 중요한 기법 중의 하나로서 베이지안 통계 이론(Bayesian Statistics Theory)를 적용하여 변수들간의 확률적인 관계를 기호화함으로써, 설명변수들과 종속변수들간의 인과관계를 파악할 수 있다. 이 연구는 기존에 적용된 바가 없는 데이터마이닝의 베이지안 망을 이용하여 수도권 교통수단선택 모형을 구축한다. 2002년도 수도권 가구통행실태조사 자료의 사회 경제적 특성과 교통체계 특성을 반영하여 베이지안 망을 이용한 교통수단선택 모형을 설계 구축하여, 각 변수들간의 상관관계와 인과관계를 분석함으로써, 설명변수인 성과 연령의 구성비가 변하였을 때, 교통수단선택의 변화율(확률)을 예측한다. 이 연구를 통해 현실에서는 내재하나 설명변수간의 복잡한 상관성을 배제하고 설명변수들과 교통수단선택간의 단순한 직선관계를 가정하는 기존 교통수단선택 모형의 한계를 극복할 수 있는 가능성을 제시한다. 또한 선택되지 않은 교통수단에 대한 정보의 부족으로 인한 교통수단선택 모형 구축의 어려움을 극복한다. 또한 다양한 교통정책에 따른 교통수단선택의 변화를 실시간으로 시뮬레이션 할 수 있는 방법론을 개발한다.

Grid Method 기법을 이용한 베이지안 비정상성 확률강수량 산정 (Bayesian Nonstationary Probability Rainfall Estimation using the Grid Method)

  • 곽도현;김광섭
    • 한국수자원학회논문집
    • /
    • 제48권1호
    • /
    • pp.37-44
    • /
    • 2015
  • 본 연구에서는 Grid method를 사용하여 베이지안 비정상성 확률강우량 산정 모형을 확립하였다. 강우 극치자료의 분포로 Gumbel 분포를 채택하였으며, 분포형의 매개변수에 사전분포를 적용하고, 사전분포에 포함된 매개변수에는 초사전 분포를 적용하여 계층적 베이지안 모형을 구성하였다. Grid method는 매개변수의 발생가능 전 구간에 대하여 확률적으로 더 높은 뒷받침이 있는 하위 구간에서 난수를 직접 생성하여 집합을 구성함으로써 잘못된 결과를 도출할 수 가능성이 높은 상황에서도 보다 정확한 매개변수의 추정을 가능케 하므로 매개변수의 추정과정에서 비표준분포로 나타나는 조건부 확률밀도함수를 통한 난수의 추출은 기존에 사용해 온 Metropolis Hastings 알고리즘이 아닌 Grid method를 사용하였다. 개발된 모형은 서울의 1973년부터 2012년까지의 시강우자료를 이용하여 미래에 대한 재현기간에 따른 확률강수량을 산정하였으며, 그 결과로 기존 정상성 가정에 비해 목표연도에 따라 5%에서 8%정도의 증가율을 나타냈다.

확률적 자율 학습을 위한 베이지안 모델 (Bayesian Model for Probabilistic Unsupervised Learning)

  • 최준혁;김중배;김대수;임기욱
    • 한국지능시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.849-854
    • /
    • 2001
  • Bishop이 제안한 Generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률 버전이다. GTM은 데이터가 생성되는 확률 분포를 잠재 변수, 혹은 은닉 변수를 사용하여 모형화한다. 이것은 SOM에서는 구현될 수 없는 GTM만의 특징이며, 이러한 특징으로 인하여 SOM의 한계들을 극복할 수 있게 된다. 본 논문에서는 이러한 GTM 모형에 베이지안 학습(Bayesian learning)을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 알고리즘은 기존의 GTM의 빠른 계산 처리 능력과 데이터에 대한 확률 분포, 그리고 베이지안 추론의 정확성을 이용하여 기존의 분류 알고리즘보다 우수한 결과를 얻게 된다. 본 논문에서는 기존의 분류 알고리즘에서 많이 실험하였다. 학습 데이터를 통하여 이를 확인하였다.

  • PDF