• 제목/요약/키워드: 베이지안 확률 모델

검색결과 101건 처리시간 0.027초

신뢰성 해석을 위한 결합분포함수의 통계모델링 (Statistical Modeling of Joint Distribution Functions for Reliability Analysis)

  • 노유정;이상진
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.2603-2609
    • /
    • 2014
  • 기계시스템의 신뢰성 해석을 위해서는 기계시스템에 성능을 미치는 변수의 확률 분포와 파라미터를 결정하는 통계적 모델링은 반드시 필요하다. 하지만, 신뢰성 해석에서 상당수의 변수는 상관관계가 있음에도 불구하고 독립변수로 취급되거나 실험데이터 수가 부족하다는 이유로 통계 모델에 대한 잘못된 가정을 하는 경우가 많다. 본 연구에서는 베이지안 방법을 이용하여 상관관계를 갖는 데이터의 결합분포함수를 copula를 이용하여 모델링함으로써 적은 수의 데이터로부터 정확한 입력모델을 산정하는 방법을 제안하였으며, 방법의 검증을 위해 다양한 상관계수와 데이터 수에 대해 통계 시뮬레이션을 수행하였다. 그 결과 Bayesian방법은 상관계수가 낮아 후보함수가 유사하거나 샘플수가 적어 정확한 모델을 산정하기 어려운 경우에도 후보 copula 중 실제 copula와 가장 근사한 후보 copula를 선정하였다. 이러한 근사 후보 copula는 신뢰성 해석결과 역시 실제 copula 함수를 이용한 신뢰성 해석 결과와 유사한 결과를 가짐을 확인할 수 있으므로 베이지안 방법은 신뢰성 해석을 위해 정확한 통계모델링을 제공함을 알 수 있다.

고차 데이터 분류를 위한 순차적 베이지안 샘플링을 기반으로 한 하이퍼네트워크 모델의 진화적 학습 기법 (Evolutionary Learning of Hypernetwork Classifiers Based on Sequential Bayesian Sampling for High-dimensional Data)

  • 하정우;김수진;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.336-338
    • /
    • 2012
  • 본 연구에서는 고차 데이터 분류를 위해 순차적 베이지만 샘플링 기반의 진화연산 기법을 이용한 하이퍼네트워크 모델의 학습 알고리즘을 제시한다. 제시하는 방법에서는 모델의 조건부 확률의 사후(posterior) 분포를 최대화하도록 학습이 진행된다. 이를 위해 사전(prior) 분포를 문제와 관련된 사전지식(prior knowledge) 및 모델 복잡도(model complexity)로 정의하고, 측정된 모델의 분류성능을 우도(likelihood)로 사 용하며, 측정된 사전분포와 우도를 이용하여 모델의 적합도(fitness)를 정의한다. 이를 통해 하이퍼네트워크 모델은 고차원 데이터를 효율적으로 학습 가능할 뿐이 아니라 모델의 학습시간 및 분류성능이 개선될 수 있다. 또한 학습 시에 파라미터로 주어지던 하이퍼에지의 구성 및 모델의 크기가 학습과정 중에 적응적으로 결정될 수 있다. 제안하는 학습방법의 검증을 위해 본 논문에서는 약 25,000개의 유전자 발현정보 데이터셋에 대한 분류문제에 모델을 적용한다. 실험 결과를 통해 제시하는 방법이 기존 하이퍼네트워크 학습 방법 뿐 아니라 다른 모델들에 비해 우수한 분류 성능을 보여주는 것을 확인할 수 있다. 또한 다양한 실험을 통해 사전분포로 사용된 사전지식이 모델 학습에 끼치는 영향을 분석한다.

다중 관측 모델을 적용한 입자 필터 기반 물체 추적 (Visual Object Tracking based on Particle Filters with Multiple Observation)

  • 고형승;조용군;강훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.69-74
    • /
    • 2004
  • 본 논문에서는 CONDENSATION 알고리즘을 이용하여 입자 필터(particle filter)에 기반한 물체 추적 알고리즘을 제안한다. 입자 필터는 조건 확률 전파 모델(Conditional Density Propagation)인 베이지안(Bayesian) 추론 규칙을 적용하는 추적 구조를 갖고 있기 때문에 다른 어떤 종류의 추적 알고리즘보다 뛰어난 성능을 보인다. 논문에서는 실험 결과를 통해, 외곽(Contour) 추적 입자 필터가 복잡한 환경 속에서 강인한 추적 성능을 나타냄을 증명한다.

  • PDF

사용자환경정보 기반 Context-based Service 추론모델 (Context-based Service Reasoning Model Based on User Environment Information)

  • 고광은;장인훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.907-912
    • /
    • 2007
  • 현재의 유비쿼터스 컴퓨팅 기술은 공간에서 사용자가 요구하는 직접적인 서비스만을 제공하는 정도의 기술 구현에 그치고 있으며, 앞으로는 좀 더 능동적인 서비스를 제공할 수 있는 지능적인 시스템이 필요해지고 있다. 사용자의 개입 없이 사용자가 처한 상황에 대한 정보를 통해 제공할 서비스를 결정할 수 있는 시스템을 구성하기 위해 본 논문에서는 지능형 홈과 같은 유비쿼터스 컴퓨팅 공간에서의 사용자가 처한 상황에 대한 환경정보를 Context로 정의하고 4W1H의 형태로 정형화하여 수집한다. 추가적으로 사용자의 감정 상태에 대한 정보를 수집하고 이러한 정보들을 확률 추론을 위한 베이지안 네트워크의 노드로 사용하여 사용자가 구체적으로 어떠한 상황에 처해 있는가에 대한 상황인식을 구현하다. 또한 그 상황 인식결과를 통해 사용자에게 제공될 서비스를 다시 한 번 베이지안 네트워크를 통해 추론하는 모델을 제시하고자 한다.

베이지안 확률 기반 범죄위험지역 예측 모델 개발 (Crime Incident Prediction Model based on Bayesian Probability)

  • 허선영;김주영;문태헌
    • 한국지리정보학회지
    • /
    • 제20권4호
    • /
    • pp.89-101
    • /
    • 2017
  • 범죄는 장소나 건축물 용도에 따라 발생빈도와 유형이 다르고, 그 장소를 이용하는 사람들의 특성 및 공간 구조 차이에 의해 다양하게 발생한다. 따라서 공간 및 지역특성을 포함한 공간 빅데이터를 활용하여 지역을 분석해 보면 범죄예방 전략을 마련할 수 있다. 아울러 빅데이터와 지능 정보화시대의 도래에 따라 예측적 경찰활동이 새로운 경찰활동의 패러다임으로 등장하고 있다. 이에 보편적인 지방도시 J시를 대상으로 3개년 동안의 7,420건의 실제 범죄사례를 바탕으로 도시공간의 물리 환경적인 특성을 분석하여 범죄발생공간을 규명하고, 위험지역을 예측해 보고자 하였다. 분석에는 다양한 빅데이터 중 범죄를 유발하는 도시 공간 내 물리 환경적 요소에 한하여 공간 빅데이터를 구축하여 공간회귀분석을 실시하였다. 다음으로 분석결과 도출된 가로폭, 평균 층수, 용적율, 1층 사용용도(제2종 근린생활시설, 상업시설, 유흥시설, 주거시설)을 변수로 베이지안확률 기반 범죄발생 위험성 예측 모형(CIPM: Crime Incident Prediction Model)을 개발하였다. 개발된 모델은 실제 범죄발생 지역과의 중첩분석 및 모델의 정확도를 판단하는 Roc curve 분석을 통해 AUC 값이 0.8로 모델이 적합한 것으로 나타났다. 개발된 모델을 토대로 사례지역의 범죄 위험도를 분석한 결과 범죄발생은 상업 및 유흥시설이 밀집된 지역과 건물층수가 높은 지역, 그리고 상업 및 유흥시설과 주거가 혼재해 있는 블록이 범죄발생 확률이 높은 것으로 나타났다. 본 연구는 단순히 범죄의 공간적 분포와 범죄발생 영향요인을 탐색하는 기존의 연구와 달리 범죄발생 예측모델을 확률론적 관점에서 개발하는 영역으로 한 단계 진전되었다는 점에 의의가 있다.

다중시기 원격탐사 화상의 변화탐지를 위한 임계치 자동 추정 (Automatic Estimation of Threshold Values for Change Detection of Multi-temporal Remote Sensing Images)

  • 박노욱;지광훈;이광재;권병두
    • 대한원격탐사학회지
    • /
    • 제19권6호
    • /
    • pp.465-478
    • /
    • 2003
  • 이 논문은 다중시기 원격탐사 화상의 무감독 변화탐지를 위해 자동으로 임계치를 결정하는 두가지 방법을 제안하였다. 두 방법 모두 3성분 가우시안 혼합 확률 모델의 파라미터 추정과 베이지안 최소 오차 이론을 이용한 임계치 결정의 두 단계로 이루어져 있다. 첫 번째 방법은 Bruzzone and Prieto (2000)의 방법을 확장 적용한 것으로, 혼합 확률 모델의 파라미터 추정에 기대최대화 기법을 적용한다. 두 번째 제안 방법은 연속적으로 임계치 결정과 혼합 확률 모델의 파라미터 추정을 수행한다. 모의 화상과 KOMPSAT-1 EOC 화상에 적용한 결과, 제안한 두 기법 모두 효율적으로 모델 파라미터를 추정할 수 있었으며, 최소 오차를 보이는 임계치에 근사한 값을 추출할 수 있었다.

공간통합 모델을 적용한 암괴류 및 애추 지형 분포가능지 추출 (Extraction of Potential Area for Block Stream and Talus Using Spatial Integration Model)

  • 이성호;장동호
    • 한국지형학회지
    • /
    • 제26권2호
    • /
    • pp.1-14
    • /
    • 2019
  • This study analyzed the relativity between block stream and talus distributions by employing a likelihood ratio approach. Possible distribution sites for each debris slope landform were extracted by applying a spatial integration model, in which we combined fuzzy set model, Bayesian predictive model, and logistic regression model. Moreover, to verify model performance, a success rate curve was prepared by cross-validation. The results showed that elevation, slope, curvature, topographic wetness index, geology, soil drainage, and soil depth were closely related to the debris slope landform sites. In addition, all spatial integration models displayed an accuracy of over 90%. The accuracy of the distribution potential area map of the block stream was highest in the logistic regression model (93.79%). Eventually, the accuracy of the distribution potential area map of the talus was also highest in the logistic regression model (97.02%). We expect that the present results will provide essential data and propose methodologies to improve the performance of efficient and systematic micro-landform studies. Moreover, our research will potentially help to enhance field research and topographic resource management.

선별적 데이터 학습 기반의 베이지안 네트워크를 이용한 단기차량속도 예측 (A Short-Term Vehicle Speed Prediction using Bayesian Network Based Selective Data Learning)

  • 박성호;유영중;문상호;김영호
    • 한국정보통신학회논문지
    • /
    • 제19권12호
    • /
    • pp.2779-2784
    • /
    • 2015
  • 정확한 교통정보의 예측은 출발지로부터 목적지까지의 최적경로를 제공할 수 있으며, 이로 인해 시간과 비용의 절감 효과를 얻을 수 있다. 본 논문에서는 다양한 교통정보 예측 방법 중 확률 모델을 기반으로 교통정보를 예측하는 베이지안 네트워크 방법을 이용한다. 기존 연구에서는 베이지안 네트워크 예측 방법이 모든 시간대에서의 데이터를 학습에 사용하는 것과는 달리, 본 논문에서는 예측하고자 하는 시간대와 동일한 요일과 시간에 해당하는 데이터만을 선별적으로 학습에 사용한다. 서로 다른 두 가지 학습방법에 따른 예측 결과의 정확도는 일반적으로 많이 사용되는 MAPE(Mean Absolute Percentage Error)로 검증하였으며, 서울 시내 14개의 링크 구간에 대해 실험을 진행하였다. 실험결과는 본 논문에서 제안한 방법이 모든 시간대의 데이터를 학습에 사용한 방법에 비해 MAPE의 관점에서 더 높은 정확도를 가진 교통 예측 값을 계산할 수 있음을 보여준다.

장애인을 위한 상황인식 및 서비스 추론기술 개발 (Development of Context Awareness and Service Reasoning Technique for Handicapped Person)

  • 고광은;장인훈;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.139-142
    • /
    • 2008
  • 현대 산업의 발전에 따른 사회고령화, 장애인구 증가는 장애인을 위해 특화된 서비스를 제공할 유비쿼터스 컴퓨팅 기술의 개발이 필요함을 나타낸다. 이를 위해 사용자와 유비쿼터스 환경 간의 상호작용이 지원되는 상황인식 서비스 기술 개발이 필요하다. 상황인식 서비스 기술은 미들웨어와 응용서비스 개발로 분류 가능하며, 본 논문은 응용서비스 개발의 차원에서 장애인을 위한 서비스 Activity를 결정하고, 이것을 기반으로 온톨로지가 적용된 상황정보의 모델링을 구현한다. 상황정보 모델을 상황인식을 위한 베이지안 네트워크의 구조학습에 적용하여, 확률 기반 상황 추론이 가능한 상황인식 시스템을 개발한다.

  • PDF

계층적 베이지안 ARX 모형을 활용한 염분모의기법 개발 (Development of salinity simulation using a hierarchical bayesian ARX model)

  • 김호준;신충훈;김태웅;권현한
    • 한국수자원학회논문집
    • /
    • 제53권7호
    • /
    • pp.481-491
    • /
    • 2020
  • 새만금 농업단지가 조성됨에 따라 농업용수 공급이 요구되며, 농업적 측면에서 염분은 작물 재배시 생육에 영향을 미치는 항목으로 농업용수 공급시 철저한 관리가 요구된다. 따라서 농작물에 영향을 미치지 않는 농업용수 공급을 위해 염분계측을 통한 체계적인 농업용수 관리가 필요하다. 본 연구에서는 새만금호내에 관측되는 염분 시계열 자료를 모의하기 위해서 자기회귀모형을 기반으로 한 Two-Stage ARX 모형을 개발하였다. 층별로 나눠진 염분자료를 계층적 Bayesian기법을 활용하여 매개변수를 확률분포형으로 추정하였으며 염분모의의 불확실성을 제시하였다. 최적 모형을 선정하기 위해서 통계적 지표인 BIC값을 이용하였으며, 최종적으로 선정된 모형을 통해 양수장 인근 수역의 염분 모의 결과를 제시하였다.