• Title/Summary/Keyword: 베이지안 접근

Search Result 109, Processing Time 0.022 seconds

Bayesian analysis of insurance risk model with parameter uncertainty (베이지안 접근법과 모수불확실성을 반영한 보험위험 측정 모형)

  • Cho, Jaerin;Ji, Hyesu;Lee, Hangsuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • In the Heckman-Meyers model, which is frequently referred by IAA, Swiss Solvency Test, EU Solvency II, the assumption of parameter distribution is key factor. While in theory Bayesian analysis somewhat reflects parameter uncertainty using prior distribution, it is often the case where both Heckman-Meyers and Bayesian are necessary to better manage the parameter uncertainty. Therefore, this paper proposes the use of Bayesian H-M CRM, a combination of Heckman-Meyers model and Bayesian, and analyzes its efficiency.

Bayesian Probability and Evidence Combination For Improving Scene Recognition Performance (장면 인식 성능 향상을 위한 베이지안 확률 및 증거의 결합)

  • Hwang Keum-Sung;Park Han-Saem;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.634-636
    • /
    • 2005
  • 지능형 로봇 기술이 발전하면서 영상에서 장면을 이해하는 연구가 많은 관심을 받고 있으며, 최근에는 불확실한 환경에서도 좋은 성능을 발휘할 수 있는 확률적 접근 방법이 많이 연구되고 있다. 본 논문에서는 확률적 모델링이 가능한 베이지안 네트워크(BN)를 이용해서 장면 인식 추론 모듈을 설계하고, 실제 환경에서 얻어진 증거 및 베이지안 추론 결과를 결합하여 분류 성능을 향상시키기 위한 방법을 제안한다. 영상 정보는 시간에 대해 연속성을 가지고 있기 때문에, 증거 정보와 베이지안 추론 결과들을 적절히 결합하면 더 좋은 결과를 예상할 수 있으며, 본 논문에서는 확신 요소(Certainty Factor: CF) 분석에 의한 결합 방법을 사용하였다. 성능 평가 실험을 위해서 SET (Scale Invariant Feature Transform) 기법을 이용하여 물체 인식 처리를 수행하고, 여기서 얻어진 데이터를 베이지안 추론의 증거로 사용하였으며, 전문가의 CF 값 정의에 의한 베이지안 네트워크 설계 방법을 이용하였다.

  • PDF

Learning Bayesian Network Parameters using Dialogue based User Feedbacks (대화기반 사용자 피드백을 이용한 베이지안 네트워크 파라메터 학습)

  • Lim, Sung-Soo;Lee, Seung-Hyun;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.419-422
    • /
    • 2010
  • 사용자와 환경의 변화에 적응하기 위해서 베이지안 네트워크의 다양한 학습 방법들이 연구되고 있다. 기존의 많은 학습방법에서는 학습 데이터로부터 통계적 방법을 통해서 베이지안 네트워크 모델을 학습하는데, 이러한 접근 방법은 학습 데이터를 수집하기 어려운 문제에 적용하기 힘들며, 사용자의 의도를 데이터의 패턴들로만 학습하므로 직접적으로 사용자의 의도를 반영할 수 없다. 본 논문에서는 대화에 기반하여 사용자의 의도를 직접적으로 수집하고, 이로부터 베이지안 네트워크의 파라메터를 학습하는 방법을 연구한다. 제안하는 방법에서는 사용자와의 대화를 통해서 현재의 모델의 잘못된 점 혹은 개선점을 직접적으로 입력 받고, 이를 바탕으로 베이지안 네트워크 모델을 수정하여 데이터의 수집 없이 빠른 시간에 사용자가 원하는 모델을 학습 할 수 있다. 기존의 통계적 기법을 이용한 대표적인 베이지안 네트워크 파라메터 학습 방법인 최대우도 추정(Maximum Likelihood Estimation; MLE) 방법과 제안하는 방법을 비교하여 제안하는 방법의 유용성을 확인한다.

  • PDF

왜 베이지안 인가?

  • Lee, Gun-Hui
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.69-73
    • /
    • 2002
  • 본 발표에서는 베이지안이 생각하는 확률의 개념을 상호교환성(exchangeability)의 가정아래 어떻게 확장되어 해석되는지를 소개하고, 빈도학자들의 접근방법과 비교함으로서 베이지안에서 생각하는 확률이 어떠한 특징을 가지고 있는지를 설명하고자 하였다. 또한 Efron에 의하여 지적된 베이지안의 네 가지 문제점에 대하여 논의하고 특별히 과학적 객관성(scientific objectivism)의 한계점과 이러한 한계점을 베이지안에서 어떻게 해결하고 있는지에 대하여 논의하였다. 일반적으로 과학적 객관성에 대한 한계점은 빈도학자들의 방법론에서도 존재하게 된다. 즉, 연구자가 가설을 설정하고 이에 맞는 실험설계를 하고 유의수준을 설정하고 p값을 이용하여 의사결정을 내리는 모든 단계에서 연구자의 주관성이 들어갈 수밖에 없게 된다는 것이다. 베이지안 방법론에서는 이러한 비객관적인 체계를 인정하고 파악하여 사전확률(prior)에 포함시킴으로서 이를 객관적인 자료인 가능도함수(likelihood function)와 혼합하여 추론이나 의사결정을 진행하게 된다. 마지막으로 베이지안 학자들의 최근 객관적인 사전확률에 대한 다양한 형태의 연구를 소개하는 것으로 발표를 마무리하고자 한다.

  • PDF

A Bayesian approach for dynamic Nelson-Siegel yield curve modeling on SOFR term rate data (SOFR 기간 데이터에 대한 동적 넬슨-시겔 이자율 곡선의 베이지안 접근법)

  • Seong Ho Im;Beom Seuk Hwang
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.4
    • /
    • pp.349-360
    • /
    • 2023
  • Dynamic Nelson-Siegel model is widely used in modeling term structure of interest rates for financial products. In this study, we explain dynamic Nelson-Siegel model from the perspective of the state space model and explore Bayesian approaches that can be applied to that model. By applying SOFR term rate data to the Bayesian dynamic Nelson-Siegel model, we confirm the performance and compare it with other competing models such as Vasicek model, dynamic Nelson-Siegel model based on the frequentist approach, and the two-factor Bayesian dynamic Nelson-Siegel model. We also confirm that the Bayesian dynamic Nelson-Siegel model outperformed its competitors on SOFR term rate data based on RMSE.

Understanding Bayesian Experimental Design with Its Applications (베이지안 실험계획법의 이해와 응용)

  • Lee, Gunhee
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1029-1038
    • /
    • 2014
  • Bayesian experimental design is a useful concept in applied statistics for the design of efficient experiments especially if prior knowledge in the experiment is available. However, a theoretical or numerical approach is not simple to implement. We review the concept of a Bayesian experiment approach for linear and nonlinear statistical models. We investigate relationships between prior knowledge and optimal design to identify Bayesian experimental design process characteristics. A balanced design is important if we do not have prior knowledge; however, prior knowledge is important in design and expert opinions should reflect an efficient analysis. Care should be taken if we set a small sample size with a vague improper prior since both Bayesian design and non-Bayesian design provide incorrect solutions.

Reliability Analysis under Input Variable and Metamodel Uncertainty using Bayesian Approach (베이지안 접근법을 이용한 입력변수 및 근사모델 불확실성 하에서의 신뢰성 분석)

  • An, Da-Wn;Won, Jun-Ho;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.97-100
    • /
    • 2009
  • 신뢰성 분석은 불확실성으로 인한 제품의 성능 변동을 안전확률이나 파괴확률로 정량화 하여 설계에 이용하기 위해 연구되어 왔다. 불확실성은, 데이터의 양에 따라-물질의 본질적인 특성으로서의 많은 데이터가 주어진 경우의 물리적 불확실성과 부족한 데이터에서의 인식론적 불확실성으로 구분되고, 불확실성을 갖는 대상에 따라-입력변수 및 근사모델 불확실성으로 구분된다. 물리적 불확실성에 대한 연구는 많이 진행되어 왔지만, 실제 산업현장에는 부족한 데이터로 인한 인식론적 불확실성이 지배적이며 이에 대한 연구는 최근에서야 진행되고 있다. 불확실성을 고려하는 신뢰성 기반 설계에는 효율성을 위해 실제모델을 대체하는 근사모델이 이용되는데, 근사모델법 자체에 대한 연구는 많이 진행되어 왔으나, 근사모델 이기 때문에 존재하는 불확실성을 고려한 연구는 최근에서야 연구되기 시작하였다. 본 연구에서는 베이지안 접근법에 기반하여 입력변수 및 근사모델 불확실성을 통합 고려하는 새로운 신뢰성 분석 기법을 제시하고 수치예제를 통해 타당성을 증명한 후, 이를 공학문제에 적용한다.

  • PDF

Inverse Estimation of Fatigue Life Parameter based on Bayesian Approach (베이지안 접근법을 이용한 피로수명 파라미터의 역 추정)

  • Heo, Chan-Young;An, Da-Wn;Choi, Joo-Ho;Jeon, Jeong-Il
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.620-623
    • /
    • 2010
  • 구조요소의 설계에서 유한요소해석은 매우 효과적인 방법이며 정확한 해석 기술을 요구한다. 그러나 제조 공정이나 환경에 따라 달라지는 재료 물성이나 불확실성을 내포하는 피로 물성을 확정적인 값으로 이용하는 등 입력 변수의 부정확한 정보로 인해 유한요소해석 결과를 신뢰하지 못하는 경우가 자주 발생한다. 실제 시험을 통해 설계의 결과를 예측하는 것은 경제적인 측면과 시간소요 면에서 한계가 따르기에 신뢰할 수 있는 유한요소해석 방법이 요구된다. 본 연구에서는 고주기의 피로 해석을 위해 유한요소해석을 이용하여 스프링의 응력-수명(S-N) 파라미터를 역 추정하고 수명을 예측해 보았다. 이를 위해 실제 산업현장에서 쓰이는 자동차 서스펜션 코일 스프링을 예제로 사용하였다. 시험 모델에 대해 불확실성을 고려한 베이지안 접근법을 이용하여 입력변수의 파라미터를 역 추정하였으며, 마코프체인몬테카를로(Markov Chain Monte Carlo) 기법을 이용하여 얻어진 피로 물성 파라미터의 샘플 데이터를 이용해서 유한요소해석을 실시하고 신뢰수준 내에서 새로운 구조요소의 피로수명을 예측하였다.

  • PDF

공변량을 갖는 패널자기회귀 과정에 대한 베이즈추정

  • 신민웅;신기일
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.94-101
    • /
    • 1994
  • 본 논문은 패널(panel) 자기회귀 모형에서 자기회귀 계수의 추정을 베이지안 방법으로 접근하였는데, 이 때 특별히 Gibbs Sampling 방법을 이용하여 사후분포를 계산하였다. 또한 모의 실험을 통하여 자기회귀계수를 Gibbs Sampling 방법으로 추정한 베이지안 추정치가 non-Bayesian 방법으로 구한 추정치보다 더 우월함을 보였다.

  • PDF

Rainfall Frequency Analysis and Uncertainty Quantification Using Dempster-Shafer Theory (Dempster-Shafer 이론을 이용한 강우빈도분석 및 불확실성의 정량화)

  • Seo, Young-Min;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1390-1394
    • /
    • 2010
  • Dempster-Shafer 이론은 미지의 매개변수 추정시 베이지안 기법의 제약을 완화시키기 위한 베이지안 접근법의 일반화로 해석될 수 있으며, 상호배타적인 싱글톤에만 확률이 할당되는 것이 아니라 가능한 결과의 부분집합들이 기본확률할당을 위한 대상으로 고려된다. 베이지안 접근은 우연적 불확실성 및 지식의 불확실성을 효율적으로 구분할 수 없으며, 특정도가 낮고 애매한 증거들을 다룰 수 없는 반면, Dempster-Shafer 증거추론은 이러한 문제들을 효율적으로 평가할 수 있다. 따라서 본 논문에서는 홍수위험평가 및 수자원 계획 수립시 가장 기본이 되는 강우빈도해석에서 확률분포의 매개변수에 대한 불확실성 고려한 확률강우량의 산정 및 불확실성의 영향을 평가하기 위하여 Dempster-Shafer 이론을 이용하여 불확실성을 고려한 강우빈도해석모델 구축 및 적용을 통해 홍수위험평가 및 수자원 계획 등에 있어서 불확실성 표현 및 처리기법을 제시하였다.

  • PDF