• Title/Summary/Keyword: 베이지안 매개변수 산정법

Search Result 7, Processing Time 0.026 seconds

Evaluation of Parameter Estimation Methods Using Uncertainty Analysis of Rainfall-Frequency Curves (강우-빈도 곡선의 불확실성 분석을 이용한 매개변수 추정법의 평가)

  • Han, Jeong-Woo;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1272-1276
    • /
    • 2009
  • 극치강우사상에 의한 설계 홍수량의 갑작스런 증 감은 홍수, 가뭄과 같은 기상학적 요인에 기인한 재난을 발생시킨다. 많은 연구자들은 보다 정확한 확률강우량의 예측과 유출량의 예측을 위해 많은 노력을 하고 있다. 본 연구에서는 강원도 강릉 강우관측소를 대상으로 강우-빈도곡선의 불확실성 분석을 수행하였다. 관측 자료의 수집에서 발생하는 불확실성을 최소화 하고자 ARMA 모형을 이용하여 합성강우자료를 구축하였으며, 발생된 합성강우량을 Bootstrap 방법을 이용하여 대규모의 자료집단으로 발생시킴으로서 신뢰구간에 사용할 자료집단을 발생시켰다. 본 연구에서는 극치강우사상에 적합한 것으로 알려진 Gumbel 분포와 일반극치 분포(GEV 분포) 모형을 선정하였으며 각 확률분포모형에 대한 매개변수 추정방법으로 최우도법, 확률가중모멘트법 그리고 베이지안 추론방법을 사용하여 각 매개변수의 최후 추정치를 산정하였다. 또한 원 자료를 이용하여 최우도법, 확률가중모멘트법 그리고 베이지안 추론방법을 통해 매개변수를 산정 후 강우-빈도 곡선을 추정하여 합성강우자료의 Bootstrap 방법에 의해 발생된 자료로부터 산정한 강우-빈도 곡선의 신뢰구간과 비교함으로서 불확실성이 낮은 확률강우량을 산정할 수 있는 매개변수 추정방법을 평가하고자하였다.

  • PDF

Modeling Procedure to Adapt to Change of Trend of Water Demand: Application of Bayesian Parameter Estimation (물수요의 추세 변화의 적응을 위한 모델링 절차 제시:베이지안 매개변수 산정법 적용)

  • Lee, Sangeun;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.241-249
    • /
    • 2009
  • It is well known that the trend of water demand in large-size water supply systems has been suddenly changed, and many expansions of water supply facilities become unnecessary. To be cost-effective, thus, politicians as well as many professionals lay stress on the adaptive management of water supply facilities. Failure in adapting to the new trend of demand is sure to be the most critical reason of unnecessary expansions. Hence, we try to develop the model and modeling procedure that do not depend on the old data of demand, and provide engineers with the fast learning process. To forecast water demand of Seoul, the Bayesian parameter estimation was applied, which is a representative method for statistical pattern recognition. It results that we can get a useful time-series model after observing water demand during 6 years, although trend of water demand were suddenly changed.

Rainfall Frequency Analysis and Uncertainty Quantification Using Dempster-Shafer Theory (Dempster-Shafer 이론을 이용한 강우빈도분석 및 불확실성의 정량화)

  • Seo, Young-Min;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1390-1394
    • /
    • 2010
  • Dempster-Shafer 이론은 미지의 매개변수 추정시 베이지안 기법의 제약을 완화시키기 위한 베이지안 접근법의 일반화로 해석될 수 있으며, 상호배타적인 싱글톤에만 확률이 할당되는 것이 아니라 가능한 결과의 부분집합들이 기본확률할당을 위한 대상으로 고려된다. 베이지안 접근은 우연적 불확실성 및 지식의 불확실성을 효율적으로 구분할 수 없으며, 특정도가 낮고 애매한 증거들을 다룰 수 없는 반면, Dempster-Shafer 증거추론은 이러한 문제들을 효율적으로 평가할 수 있다. 따라서 본 논문에서는 홍수위험평가 및 수자원 계획 수립시 가장 기본이 되는 강우빈도해석에서 확률분포의 매개변수에 대한 불확실성 고려한 확률강우량의 산정 및 불확실성의 영향을 평가하기 위하여 Dempster-Shafer 이론을 이용하여 불확실성을 고려한 강우빈도해석모델 구축 및 적용을 통해 홍수위험평가 및 수자원 계획 등에 있어서 불확실성 표현 및 처리기법을 제시하였다.

  • PDF

Reliability Evaluation of Parameter Estimation Methods of Probability Density Function for Estimating Probability Rainfalls (확률강우량 추정을 위한 확률분포함수의 매개변수 추정법에 대한 신뢰성 평가)

  • Han, Jeong-Woo;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.143-151
    • /
    • 2009
  • Extreme hydrologic events cause serious disaster, such as flood and drought. Many researchers have an effort to estimate design rainfalls or discharges. This study evaluated parameter estimation methods to estimate probability rainfalls with low uncertainty which will be used in design rainfalls. This study collected rainfall data from Incheon, Gangnueng, Gwangju, Busan, and Chupungryong gage station, and generated synthetic rainfall data using ARMA model. This study employed the maximum likelihood method and the Bayesian inference method for estimating parameters of the Gumbel and GEV distribution. Using a bootstrap resampling method, this study estimated the confidence intervals of estimated probability rainfalls. Based on the comparison of the confidence intervals, this study recommended a proper parameter estimation method for estimating probability rainfalls which have a low uncertainty.

Future inflow projection based on Bayesian optimization for hyper-parameters (하이퍼매개변수 베이지안 최적화 기법을 적용한 미래 유입량 예측)

  • Tran, Trung Duc;Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.347-347
    • /
    • 2022
  • 최근 데이터 사이언스의 비약적인 발전과 함께 다양한 형태의 딥러닝 알고리즘이 개발되어 수자원 분야에도 적용되고 있다. 이 연구에서는 LSTM(Long Short-Term Memory) 네트워크와 BO-LSTM이라는 베이지안 최적화(BO) 기술을 결합하여 일단위 앙상블 미래 댐유입량을 projection하는 딥 러닝 모델을 제안하였다. BO-LSTM 하이퍼파라미터 및 손실 함수는 베이지안 최적화 기법을 통해 훈련 및 최적화되며, BO 접근법은 모델의 하이퍼파라미터와 손실 함수를 높은 정확도로 빠르게 최적화할 수 있었다(R=0.92 및 NSE=0.85). 또한 미래 댐 유입량을 예측하기 위한 LSTM의 구조는 Forecasting 모형과 Proiection 모형으로 구분하여 두 모형의 장단점을 분석하였으며, 본 연구의 결과로부터 데이터 처리 단계가 모델 훈련의 효율성을 높이고 노이즈를 줄이는 데 효과적이고 미래 예측에 있어 LSTM 구조에 따른 영향을 확인할 수 있었다. 본 연구는 소양강 유역, 2020-2100년 기간 동안의 미래 예측에 적용되었다. 전반적으로, CIMIP6 데이터에 따르면 10%에서 50%의 미래 유입량 증가가 발생하는 것으로 확인되었으며, 이는 미래 강수량의 증가의 폭과 유사함을 확인하였다. 유입량 산정에 있어 신뢰할 수 있는 예측은 저수지 운영, 계획 및 관리에 있어 정책 입안자와 운영자에게 도움이 될 것입니다.

  • PDF

Identification of Uncertainty in Fitting Rating Curve with Bayesian Regression (베이지안 회귀분석을 이용한 수위-유량 관계곡선의 불확실성 분석)

  • Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.943-958
    • /
    • 2008
  • This study employs Bayesian regression analysis for fitting discharge rating curves. The parameter estimates using the Bayesian regression analysis were compared to ordinary least square method using the t-distribution. In these comparisons, the mean values from the t-distribution and the Bayesian regression are not significantly different. However, the difference between upper and lower limits are remarkably reduced with the Bayesian regression. Therefore, from the point of view of uncertainty analysis, the Bayesian regression is more attractive than the conventional method based on a t-distribution because the data size at the site of interest is typically insufficient to estimate the parameters in rating curve. The merits and demerits of the two types of estimation methods are analyzed through the statistical simulation considering heteroscedasticity. The validation of the Bayesian regression is also performed using real stage-discharge data which were observed at 5 gauges on the Anyangcheon basin. Because the true parameters at 5 gauges are unknown, the quantitative accuracy of the Bayesian regression can not be assessed. However, it can be suggested that the uncertainty in rating curves at 5 gauges be reduced by Bayesian regression.

Assessment of uncertainty associated with parameter of gumbel probability density function in rainfall frequency analysis (강우빈도해석에서 Bayesian 기법을 이용한 Gumbel 확률분포 매개변수의 불확실성 평가)

  • Moon, Jang-Won;Moon, Young-Il;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.411-422
    • /
    • 2016
  • Rainfall-runoff modeling in conjunction with rainfall frequency analysis has been widely used for estimating design floods in South Korea. However, uncertainties associated with underlying distribution and sampling error have not been properly addressed. This study applied a Bayesian method to quantify the uncertainties in the rainfall frequency analysis along with Gumbel distribution. For a purpose of comparison, a probability weighted moment (PWM) was employed to estimate confidence interval. The uncertainties associated with design rainfalls were quantitatively assessed using both Bayesian and PWM methods. The results showed that the uncertainty ranges with PWM are larger than those with Bayesian approach. In addition, the Bayesian approach was able to effectively represent asymmetric feature of underlying distribution; whereas the PWM resulted in symmetric confidence interval due to the normal approximation. The use of long period data provided better results leading to the reduction of uncertainty in both methods, and the Bayesian approach showed better performance in terms of the reduction of the uncertainty.