• Title/Summary/Keyword: 베이지안 기법

Search Result 317, Processing Time 0.02 seconds

A Study on the Modeling of PoF Estimation for Probabilistic Risk Assessment based on Bayesian Method (확률론적 위험도평가를 위한 베이지안 기반의 파손확률 추정 모델링 연구)

  • Kim, Keun Won;Shin, Dae Han;Choi, Joo-Ho;Shin, KiSu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.619-624
    • /
    • 2013
  • To predict the probabilistic service life, statistical factors should be included to consider the uncertainty of parameters. Generally the probabilistic analysis is one of the common methods to account the uncertainty of parameters on the structural failure. In order to apply probabilistic analysis on the deterministic life analysis, it would be necessary to introduce Probability of Failure(PoF) and conduct risk assessment. In this work, we have studied probabilistic risk assessment of aircraft structures by using PoF approach. To achieve this goal, the Bayesian method was utilized to model PoF estimation since this method is known as the proper method to express the uncertainty of parameters. A series of proof tests were also conducted in order to verify the result of PoF estimation. The results from this efforts showed that the PoF estimation model can calculate quantitatively the value of PoF. Furthermore effectiveness of risk assessment approach for the aircraft structures was also demonstrated.

A Study on the Estimation of Launch Success Probability for Space Launch Vehicles Using Bayesian Method (베이지안 기법을 적용한 우주발사체의 발사 성공률 추정에 관한 연구)

  • Yoo, Seung-Woo;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.537-546
    • /
    • 2020
  • The reliability used as a performance indicator during the development of space launch vehicle should be validated by the launch success probability, and the launch data need to be fed back for reliability management. In this paper, the launch data of space launch vehicles around the world were investigated and statistically analyzed for the success probabilities according to the launch vehicle models and maturity. The Bayesian estimation of launch success probability was reviewed and analyzed by comparing the estimated success probabilities using several prior distributions and the statistical success probability. We presented the method of generating prior distribution function and considerations for Bayesian estimation.

Parameter Estimation of Reliability Growth Model with Incomplete Data Using Bayesian Method (베이지안 기법을 적용한 Incomplete data 기반 신뢰성 성장 모델의 모수 추정)

  • Park, Cheongeon;Lim, Jisung;Lee, Sangchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.747-752
    • /
    • 2019
  • By using the failure information and the cumulative test execution time obtained by performing the reliability growth test, it is possible to estimate the parameter of the reliability growth model, and the Mean Time Between Failure (MTBF) of the product can be predicted through the parameter estimation. However the failure information could be acquired periodically or the number of sample data of the obtained failure information could be small. Because there are various constraints such as the cost and time of test or the characteristics of the product. This may cause the error of the parameter estimation of the reliability growth model to increase. In this study, the Bayesian method is applied to estimating the parameters of the reliability growth model when the number of sample data for the fault information is small. Simulation results show that the estimation accuracy of Bayesian method is more accurate than that of Maximum Likelihood Estimation (MLE) respectively in estimation the parameters of the reliability growth model.

Context-aware application for smart home based on Bayesian network (베이지안 네트워크에 기반한 스마트 홈에서의 상황인식 기법개발)

  • Chung, Woo-Yong;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.179-184
    • /
    • 2007
  • This paper deals with a context-aware application based on Bayesian network in the smart home. Bayesian network is a powerful graphical tool for learning casual dependencies between various context events and obtaining probability distributions. So we can recognize the resident's activities and home environment based on it. However as the sensors become various, learning the structure become difficult. We construct Bayesian network simple and efficient way with mutual information and evaluated the method in the virtual smart home.

Bayesian analysis of insurance risk model with parameter uncertainty (베이지안 접근법과 모수불확실성을 반영한 보험위험 측정 모형)

  • Cho, Jaerin;Ji, Hyesu;Lee, Hangsuck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • In the Heckman-Meyers model, which is frequently referred by IAA, Swiss Solvency Test, EU Solvency II, the assumption of parameter distribution is key factor. While in theory Bayesian analysis somewhat reflects parameter uncertainty using prior distribution, it is often the case where both Heckman-Meyers and Bayesian are necessary to better manage the parameter uncertainty. Therefore, this paper proposes the use of Bayesian H-M CRM, a combination of Heckman-Meyers model and Bayesian, and analyzes its efficiency.

Frequent Pattern Bayesian Classification for ECG Pattern Diagnosis (심전도 패턴 판별을 위한 빈발 패턴 베이지안 분류)

  • Noh, Gi-Yeong;Kim, Wuon-Shik;Lee, Hun-Gyu;Lee, Sang-Tae;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1031-1040
    • /
    • 2004
  • Electrocardiogram being the recording of the heart's electrical activity provides valuable clinical information about heart's status. Many re-searches have been pursued for heart disease diagnosis using ECG so far. However, electrocardio-graph uses foreign diagnosis algorithm due to inaccuracy of diagnosis results for a heart disease. This paper suggests ECG data collection, data preprocessing and heart disease pattern classification using data mining. This classification technique is the FB(Frequent pattern Bayesian) classifier and is a combination of two data mining problems, naive bayesian and frequent pattern mining. FB uses Product Approximation construction that uses the discovered frequent patterns. Therefore, this method overcomes weakness of naive bayesian which makes the assumption of class conditional independence.

Error Analysis of Equivalence Ratio using Bayesian Statistics (베이지안 확률기법을 이용한 당량비 오차분석에 관한 연구)

  • Ahn, Joongki;Park, Ik Soo;Lee, Ho-il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.131-137
    • /
    • 2018
  • This paper analyzes the probability of failure for the equivalence ratio error. The control error of the equivalence ratio is affected by the aleatory and epistemic uncertainties. In general, reliability analysis techniques are easily incorporated to handle the aleatory uncertainty. However, the epistemic uncertainty requires a new approach, as it does not provide an uncertainty distribution. The Bayesian inference incorporates the reliability analysis results to handle both uncertainties. The result gives a distribution of failure probability, whose equivalence ratio does not meet the requirement. This technique can be useful in the analysis of most engineering systems, where the aleatory and epistemic uncertainties exist simultaneously.

Activity Recognition based on Multi-modal Sensors using Dynamic Bayesian Networks (동적 베이지안 네트워크를 이용한 델티모달센서기반 사용자 행동인식)

  • Yang, Sung-Ihk;Hong, Jin-Hyuk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.1
    • /
    • pp.72-76
    • /
    • 2009
  • Recently, as the interest of ubiquitous computing has been increased there has been lots of research about recognizing human activities to provide services in this environment. Especially, in mobile environment, contrary to the conventional vision based recognition researches, lots of researches are sensor based recognition. In this paper we propose to recognize the user's activity with multi-modal sensors using hierarchical dynamic Bayesian networks. Dynamic Bayesian networks are trained by the OVR(One-Versus-Rest) strategy. The inferring part of this network uses less calculation cost by selecting the activity with the higher percentage of the result of a simpler Bayesian network. For the experiment, we used an accelerometer and a physiological sensor recognizing eight kinds of activities, and as a result of the experiment we gain 97.4% of accuracy recognizing the user's activity.

A Study of Improvement of a Prediction Accuracy about Wind Resources based on Training Period of Bayesian Kalman Filter Technique (베이지안 칼만 필터 기법의 훈련 기간에 따른 풍력 자원 예측 정확도 향상성 연구)

  • Lee, Soon-Hwan
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.11-23
    • /
    • 2017
  • The short term predictability of wind resources is an important factor in evaluating the economic feasibility of a wind power plant. As a method of improving the predictability, a Bayesian Kalman filter is applied as the model data postprocessing. At this time, a statistical training period is needed to evaluate the correlation between estimated model and observation data for several Kalman training periods. This study was quantitatively analyzes for the prediction characteristics according to different training periods. The prediction of the temperature and wind speed with 3-day short term Bayesian Kalman training at Taebaek area is more reasonable than that in applying the other training periods. In contrast, it may produce a good prediction result in Ieodo when applying the training period for more than six days. The prediction performance of a Bayesian Kalman filter is clearly improved in the case in which the Weather Research Forecast (WRF) model prediction performance is poor. On the other hand, the performance improvement of the WRF prediction is weak at the accurate point.

Context based Place and Object Recognition using Dynamic Bayesian Network (동적 베이지안 네트워크를 이용한 컨텍스트 기반 장소 및 물체 인식)

  • Im Seung-Bin;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.286-288
    • /
    • 2006
  • 영상 이해는 컴퓨터 비전의 가장 높은 수준의 처리 기법이다. 영상을 이해하기 위해서는 위치 정보, 물체 존재정보와 같은 기본 컨텍스트들을 추출하는 것이 중요하다. 그러나 실내 환경의 영상 정보는 카메라의 흔들림이나 각도, 빛의 상태에 따라 불확실해지기 때문에 이러한 불확실함에 강인한 영상 인식 기법이 필요하다. 동적 베이지안 네트워크(DBN)는 이러한 불확실한 정보의 처리에 강인하며 장소와 물체의 관계등 고수준의 컨텍스트를 모델링하는데 좋은 성능을 보이는 확률 모델이다. 또한 DBN은 이전 상태를 추론에 활용할 수 있으므로 장소 인식과 같은 컨텍스트의 추출에 좋다. 본 연구에서는 불확실한 실내 환경 영상으로부터 영상 전처리를 통해 특징값을 추출하고, 회전이나 크기 변화에 강인한 물체인식기법인 크기불변 특징 변환기법(SIFT)을 이용하여 물체 존재정보를 추출하여 고수준 컨텍스트가 모델링된 DBN 추론으로 장소 및 물체를 인식하는 방법을 제안한다. 실제 대학 실내 환경에서의 실험으로 DBN을 이용한 영상 인식기법이 좋은 성능을 보임을 확인할 수 있었다.

  • PDF