• Title/Summary/Keyword: 베어링 정격 수명

Search Result 4, Processing Time 0.019 seconds

Bearing Life Evaluation of Automotive Wheel Bearing Considering Operation Loading and Rotation Speed (작동하중과 회전속도를 고려한 자동차용 휠 베어링의 수명평가)

  • Lee, Seung Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.595-602
    • /
    • 2016
  • An automotive wheel bearing is important part that translates rotating motion and bears vehicle weight. Recently, in accordance with the demands for $CO_2$ emission reduction and fuel economy regulation, the requirements for the weight reduction and miniaturization of vehicles has increased. Therefore, life evaluation technology of the bearings has increased in necessity. Since the bearing life is affected by many parameters such as bearing geometry, bearing specifications, and vehicle specifications, it is difficult to predict. In this paper, the bearing life was tested by varying the applied load and rotation speed and comparing them with the basic rating life and modified rating life that were suggested in ISO standards. From the results, it was found that there was a difference between the test life and theoretical life and modified rating life than basic rating life was to be relatively well predicted by test life.

Thermal Reliability Analysis of the Bearing Units in a Centrifugal Pump (원심펌프 베어링 유닛의 열신뢰성 분석)

  • Moon, Jung-Hwan;Moon, Seung-Jae;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.313-320
    • /
    • 2007
  • In this paper, the experimental study has been carried out to investigate the reliability lifetime of two bearing units based on the oil temperature. Measurements for the oil temperature as well as the bearing temperature during normal operation were performed to study the effects of oil viscosity and oil submergence percentages in the two bearing units. The optimal lubrication condition to increase the lifetime of the bearing unit A was found that its viscosity and submergence percentage were VG32 and 25%, respectively. For the bearing unit B, when the oil viscosity and submergence percent were VG32 and 75%, the lubrication condition was the most efficient. Finally, the adjusted rating times of both the bearing units were calculated to be over 28,000 h, which is greater than the minimum adjusted rating times of 25,000 h. Therefore, they satisfied the regulated lifetime of API 610.

Efficiency Improvement of Transfer Drive Gear Bearings for an Automotive Automatic Transmission (승용차 자동변속기용 트랜스퍼 드라이브 기어 베어링의 효율개선 방법에 관한 연구)

  • Lee, In Wook;Han, Sung Gil;Gwak, Beom-Seop;Lee, Ho Sung;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.40-46
    • /
    • 2021
  • An automatic transmission of automobiles enables comfortable driving experience with lower transmission shifting jerks. However, the assembly structure is more complicated and requires additional components with lower efficiency than the manual transmission system. Extensive research has been conducted to improve the overall transmission efficiency by optimizing each component of the automatic transmission assembly. This study focuses on enhancing the friction torque of double angular contact ball bearings used in automatic transmission. The friction torque of the bearing varies with the operating conditions such as the operational load and rotating speed. Since reducing the friction torque of the bearing tends to deteriorate the durability of the bearing, it is necessary to design the bearing having a minimum required friction torque by determining the durability life of an automatic transmission assembly, In this study, the theoretical life and friction torque of conventional and newly-developed bearings are calculated. The difference in the friction torque between the new and existing bearings are also evaluated.

Stress and Life Evaluation of Universal Joint of Cardan Shaft for Waterjet System of Special-Purpose Vehicle (특수 목적 차량의 수상 추진체용 카단 샤프트의 유니버셜 조인트에 대한 응력 및 수명 평가)

  • Bae, Myungho;Lee, Taeyoung;Cho, Yonsang
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.34-38
    • /
    • 2020
  • The powertrain of the waterjet system of a special-purpose vehicle makes use of the cardan shaft, which is composed of universal joints and shafts. These universal joints, composed of spiders and needle roller bearings, have to be designed with consideration for the bending and compressive stresses of the spiders and needle roller bearings, and the rating lives of the bearings. The bending and compressive stresses of the spider and bearing of a universal joint have been studied by many researchers. However, to design a universal joint effectively, overall consideration of the different specifications of needle roller bearings is necessary. In this study, the bending stresses of spiders and compressive stresses of needle roller bearings are calculated to design universal joints for powertrain cardan shafts with different roller diameters of bearing. Furthermore, the rating lives of the needle roller bearings are predicted using the calculated basic dynamic load ratings of the bearings. As a result, roller diameters less than 𝜙2.5 mm are found suitable through an analysis of the bending stress of the spider. All compressive stresses between spider and bearing, regardless of roller diameter, satisfy the requirements. Moreover, roller diameters of more than 𝜙2 mm are found suitable for the required rating life.