• 제목/요약/키워드: 베르누이-오일러보

검색결과 2건 처리시간 0.015초

유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(II) : 응용 (Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(II) : Application)

  • 박찬종;박태원
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.176-184
    • /
    • 2000
  • Recently, it becomes a very important issue to consider the mechanical systems such as high-speed vehicle and railway train moving on a flexible beam structure. Using general approach proposed in the first part of this paper, it tis possible to predict planar motion of constrained mechanical system and elastic structure with various kinds of foundation supporting condition. Combined differential-algebraic equations of motion derived from both multibody dynamics theory and Finite Element Method can be analyzed numerically using generalized coordinate partitioning algorithm. To verify the validity of this approach, results from simply supported elastic beam subjected to a moving load are compared with exact solution from a reference. Finally, parameter study is conducted for a moving vehicle model on a simply supported 3-span bridge.

  • PDF

유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(I) : 일반적인 접근법 (Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(I) : General Approach)

  • 박찬종;박태원
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.165-175
    • /
    • 2000
  • In recent years, it becomes a very important issue to consider the mechanical systems such as high-speed vehicles and railway trains moving on elastic beam structures. In this paper, a general approach, which can predict the dynamic behavior of constrained mechanical system and elastic beam structure, is proposed. Also, various supporting conditions of a foundation support are considered for the elastic beam structures. The elastic structure is assumed to be a nonuniform and linear Bernoulli-Euler beam with proportional damping effect. Combined Differential-Algebraic Equations of motion are derived using multibody dynamics theory and Finite Element Method. The proposed equations of motion can be solved numerically using generalizd coordinate partitioning method and Predictor-Corrector algorithm, which is an implicit multi-step integration method.

  • PDF