• Title/Summary/Keyword: 벙커링 안전구역

Search Result 3, Processing Time 0.016 seconds

A Study on Safety Assessment for Low-flashpoint and Eco-friendly Fueled Ship (친환경연료 선박의 가스누출 피해저감을 위한 연구)

  • Ryu Bo Rim;Duong Phan Anh;Kang Ho Keun
    • Journal of Navigation and Port Research
    • /
    • v.47 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • To limit greenhouse gas emissions from ships, numerous environmental regulations and standards have been taken into effect. As a result, alternative fuels such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), ammonia, and biofuels have been applied to ships. Most of these alternative fuels are low flashpoint fuels in the form of liquefied gas. Their use is predicted to continue to increase. Thus, management regulations for using low flash point fuel as a ship fuel are required. However, they are currently insufficient. In the case of LNG, ISO standards have been prepared in relation to bunkering. The Society for Gas as a Marine Fuel (SGMF), a non-governmental organization (NGO), has also prepared and published a guideline on LNG bunkering. The classification society also requires safety management areas to be designated according to bunkering methods and procedures for safe bunkering. Therefore, it is necessary to establish a procedure for setting a safety management area according to the type of fuel, environmental conditions, and leakage scenarios and verify it with a numerical method. In this study, as a feasibility study for establishing these procedures, application status and standards of the industry were reviewed. Classification guidelines and existing preceding studies were analyzed and investigated. Based on results of this study, a procedure for establishing a safety management area for bunkering in domestic ports of Korea can be prepared.

A Study on the Establishment of Bunkering Safety Zone for Hydrogen Propulsion Ships in Coastal Area (연근해 수소추진선박의 벙커링 안전구역 설정에 관한 연구)

  • Sungha Jeon;Sukyoung Jeong;Dong Nam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.433-440
    • /
    • 2023
  • This study aims to establish safety zones for bunkering operations of hydrogen propulsion ships in coastal areas through risk assessment and evaluate their validity. Using a 350 kW-class ferry operating in Busan Port as the subject of analysis, with quantitative risk assessment based on accident consequence and frequency analysis, along with a social risk assessment considering population density. The results of the risk assessment indicate that all scenarios were within acceptable risk criteria and ALARP region. The most critical accident scenarios involve complete hose rupture during bunkering, resulting in jet flames (Frequency: 2.76E-06, Fatalities: 9.81) and vapor cloud explosions (Frequency: 1.33E-08, Fatalities: 14.24). For the recommended safety zone criteria in the 6% hose cross-sectional area leakage scenario, It could be appropriate criteria considering overall risk level and safety zones criteria for hydrogen vehicle refueling stations. This research contributes to establishing safety zone for bunkering operations of hydrogen propulsion ships through risk assessment and provides valuable technical guidelines.

A Study on the Standard for the Safety Zone in the Domestic LNG TTS Bunkering (국내 LNG TTS 벙커링 시 안전구역 기준에 관한 연구)

  • Park, Sung-In;Roh, Jae Seung;Park, Jaehee;Park, Kyoungmin;Shin, Dongkyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.323-329
    • /
    • 2022
  • This paper suggests an example guideline of a safety zone layout for the domestic LNG Truck-To-Ship (TTS) bunkering. The safety zone is one of the controlled area in LNG bunkering and its layout is required as a fundamental safety barrier. While the international standard provides a layout methodology of the safety zone, its detail application is not user-friendly and only possible with a level of the process engineering. In the domestic case, the enforcement regulations are applied for LNG bunkering but the safety zone is not properly defined for TTS operation. Considerations are made for the intuitive approach of the safety zone layout and an example guideline is suggested for application in the domestic TTS bunkering. A technical background of the guideline is described and its applicability is demonstrated with regard to the characteristics of TTS bunkering. The findings of the study are summarized in association with a practical layout of the safety zone, contributing to the safety culture in the domestic LNG bunkering.