• Title/Summary/Keyword: 법선벡터 지도

Search Result 47, Processing Time 0.026 seconds

A Normal Vector Estimation Method using Improved Central Difference Operator (가변 중심 편차 연산자를 이용한 법선 벡터 추정방법)

  • Sin, Byeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.6
    • /
    • pp.627-635
    • /
    • 1999
  • 물체의 3차원 모델을 음영처리하기 위해서는 물체 표면의 각 점에서 법선 벡터를 계산해야 한다. 복섹 기반의 볼륨 데이터는 표면에 대한 기하학적 정보가 없기 때문에 이웃 점들의 상대적인 위치나 데이터 값의 차이로부터 법선 벡터를 추정할 수 밖에 없다. 기존에 고안된 법선 벡터추정 연산자는크기가 고정되어 있기 때문에 제한된 영역에서만 법선 벡터를 정확하게 계산하고 나머지 영역에서는 오류를 유발한다. 이 논문에서는 표면을 구성하는 점들의 공간적 배치나 그 점들의 데이터값에 따라 크기가 변하는 가변 중심 편차 연산자와 이를 이용한 법선 벡터 추정 방법을 제안한다. 이 연산자를 사용하면 기존연산자들보다 정확하게 법선 벡터를 추정할 수 있으며, 동일한 화질인 경우 계산 시간이 상당히 단축된다.

Virtual Make-up System Using Light and Normal Map Approximation (조명 및 법선벡터 지도 추정을 이용한 사실적인 가상 화장 시스템)

  • Yang, Myung Hyun;Shin, Hyun Joon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.3
    • /
    • pp.55-61
    • /
    • 2015
  • In this paper, we introduce a method to synthesize realistic make-up effects on input images efficiently. In particular, we focus on shading on the make-up effects due to the lighting and face curvature. By doing this, we can synthesize a wider range of effects realistically than the previous methods. To do this, the information about lighting information together with the normal vectors on all pixels over the face region in the input image. Since the previous methods that compute lighting information and normal vectors require relatively heavy computation cost, we introduce an approach to approximate lighting information using cascade pose regression process and normal vectors by transforming, rendering, and warping a standard 3D face model. The proposed method consumes much less computation time than the previous methods. In our experiment, we show the proposed approximation technique can produce naturally looking virtual make-up effects.

Tessellation-independent Approximation of Normal Vectors (Tessellation에 독립적인 법선 벡터 근사에 대한 연구)

  • Ahn, Jaewoo;Kim, Woongsoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.2
    • /
    • pp.29-32
    • /
    • 1998
  • When rendering polyhedral models, normal vectors at polygon vertices are necessary for smooth shading. The most commonly used technique of approximating a vertex normal vector by averaging normal vectors of faces around the vertex yields, however, different results on different tessellations Further, continuous deformation of models may cause abrupt discontinuous changes in normal vector directions. In this paper, a variation of the above technique is proposed to avoid these problems. Specifically, it uses a weighted average of normal vectors of faces around the vertex, where the weight of a face being the angular span of the two edges incident on the vertex.

  • PDF

Vertex Normal Computation using Conformal Mapping and Mean Value Coordinates (등각사상과 평균값좌표계를 이용한 정점 법선벡터 계산법)

  • Kim, Hyoung-Seok B.;Kim, Ho-Sook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.451-457
    • /
    • 2009
  • Most of objects in computer graphics may be represented by a form of mesh. The exact computation of vertex normal vectors is essential for user to apply a variety of geometric operations to the mesh and get more realistic rendering results. Most of the previous algorithms used a weight which resembles a local geometric property of a vertex of a mesh such as the interior angle, the area, and so on. In this paper, we propose an efficient algorithm for computing the normal vector of a vertex in meshes. Our method uses the conformal mapping which resembles synthetically the local geometric properties, and the mean value coordinates which may smoothly represent a relationship with the adjacent vertices. It may be confirmed by experiment that the normal vector of our algorithm is more exact than that of the previous methods.

High-quality Realtime Rendering of Metallic Surface with Microfacet Distribution Function Deformation (미세면 분포 함수 변형을 통한 고품질 실시간 금속 렌더링)

  • Kang, Young-Min
    • Journal of Korea Game Society
    • /
    • v.10 no.6
    • /
    • pp.169-178
    • /
    • 2010
  • An effective method to render realistic metallic surface in realtime application is proposed. The proposed method perturbs the normal vectors on the metallic surface to represent small scratches. In general, bump map or normal map method is used to gnerate normal vector perturbation. However, those methods do not show plausible light scattering when applied to anisotropic reflection surface. In order to express metallic surface reflectance, MDF-based BRDF is generally employed. Therefore, the simple normal perturbation does not produce satisfactory metal rendering results. The proposed method employs not only normal perturbation but also deformation of the microfacet distribution function(MDF) that determines the reflectance properties on the surface. The MDF deformation increases the realism of metal rendering. The proposed method can be easily implemented with GPU programs, and works well in realtime environments.

Indoor environment recognition based on depth image (깊이 영상 기반 실내 공간 인식)

  • Kim, Su-Kyung;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.53-61
    • /
    • 2014
  • In this paper, we propose a method using an image received by the depth camera in order to separate the wall in a three-dimensional space indoor environment. Results of the paper may be used to provide valuable information on the three-dimensional space. For example, they may be used to recognize the indoor space, to detect adjacent objects, or to project a projector on the wall. The proposed method first detects a normal vector at each point by using the three dimensional coordinates of points. The normal vectors are then clustered into several groups according to similarity. The RANSAC algorithm is applied to separate out planes. The domain knowledge helps to determine the wall among planes in an indoor environment. This paper concludes with experimental results that show performance of the proposed method in various experimental environment.

3D Model Retrieval using Distribution of Interpolated Normal Vectors on Simplified Mesh (간략화된 메쉬에서 보간된 법선 벡터의 분포를 이용한 3차원 모델 검색)

  • Kim, A-Mi;Song, Ju-Whan;Gwun, Ou-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1692-1700
    • /
    • 2009
  • This paper proposes the direction distribution of surface normal vectors as a feature descriptor of three-dimensional models. Proposed the feature descriptor handles rotation invariance using a principal component analysis(PCA) method, and performs mesh simplification to make it robust and nonsensitive against noise addition. Our method picks samples for the distribution of normal vectors to be proportional to the area of each polygon, applies weight to the normal vectors, and applies interpolation to enhance discrimination so that the information on the surface with less area may be less reflected on composing a feature descriptor. This research measures similarity between models with a L1-norm in the probability density histogram where the distances of feature descriptors are normalized. Experimental results have shown that the proposed method has improved the retrieval performance described in an average normalized modified retrieval rank(ANMRR) by about 17.2% and the retrieval performance described in a quantitative discrimination scale by 9.6%~17.5% as compared to the existing method.

  • PDF

A Linear-time Algorithm for Computing the Spherical Voronoi Diagram of Unit Normal Vectors of a Convex Polyhedron (볼록 다면체 단위 법선 벡터의 구면 보로노이 다이아그램을 계산하기 위한 선형시간 알고리즘)

  • Kim, Hyeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.10
    • /
    • pp.835-839
    • /
    • 2000
  • 보로노이 다이아그램은 계산기하학에서 다양한 형태의 근접 문제를 해결함에 있어 중요한 역할을 하고 있다. 일반적으로 평면상의 n 개의 점에 의한 평면 보로노이 다이아그램 O(nlogn) 시간에 생성할 수 있으며 이 알고리즘의 시간 복잡도가 최적임이 밝혀져 있다. 본 논문에서는 특별한 관계를 갖는 단위 구면상의 점들에 대한 구면 상에서 정의되는 보로노이 다이아그램을 O(n)에 생성하는 알고리즘을 제시한다. 이때 주어진 구면상의 점들은 볼록 다면체의 단위 법선 벡터들의 종점에 해당되며, 구면 보로노이 다이아그램의 선분은 구면상의 geodesic으로 이루어진다.

  • PDF

Acceleration of Mesh Denoising Using GPU Parallel Processing (GPU의 병렬 처리 기능을 이용한 메쉬 평탄화 가속 방법)

  • Lee, Sang-Gil;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.9 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • Mesh denoising is a method to remove noise applying various filters. However, those methods usually spend much time since filtering is performed on CPU. Because GPU is specialized for floating point operations and faster than CPU, real-time processing for complex operations is possible. Especially mesh denoising is adequate for GPU parallel processing since it repeats the same operations for vertices or triangles. In this paper, we propose mesh denoising algorithm based on bilateral filtering using GPU parallel processing to reduce processing time. It finds neighbor triangles of each vertex for applying bilateral filter, and computes its normal vector. Then it performs bilateral filtering to estimate new vertex position and to update its normal vector.

  • PDF

Optical Multi-Normal Vector Based Iridescence BRDF Compression Method (광학적 다중 법선 벡터 기반 훈색(暈色)현상 BRDF 압축 기법)

  • Ryu, Sae-Woon;Lee, Sang-Hwa;Park, Jong-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.184-193
    • /
    • 2010
  • This paper proposes a biological iridescence BRDF(Bidirectional Reflectance Distribution Function) compression and rendering method. In the graphics technology, iridescence sometimes is named structure colors. The main features of these symptoms are shown transform of color and brightness by varying viewpoint. Graphics technology to render this is the BRDF technology. The BRDF methods enable realistic representation of varying view direction, but it requires a lot of computing power because of large data. In this paper, we obtain reflection map from iridescence BRDF, analyze color of reflection map and propose representation method by several colorfully concentric circle. The one concentric circle represents beam width of reflection ray by one normal vector. In this paper, we synthesize rough concentric by using several virtually optical normal vectors. And we obtain spectrum information from concentric circles passing through the center point. The proposed method enables IBR(image based rendering) technique which results is realistic illuminance and spectrum distribution by one texture from reduced BRDF data within spectrum.