• Title/Summary/Keyword: 법선벡터

Search Result 107, Processing Time 0.026 seconds

Filtering and GPU Optimization to Reliably Express the Exaggeration of 3D Triangular Meshes (3차원 삼각형 메쉬의 과장을 안정적으로 표현할 수 있는 필터링과 GPU 최적화)

  • SuBin Lee;Seong-Hyeok Moon;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.349-352
    • /
    • 2023
  • 본 논문에서는 법선벡터를 이용해 3D 삼각형 메쉬의 형태를 안정적으로 과장하고 GPU 기반으로 새롭게 설계하는 프레임워크를 제안한다. 우리는 High-boost 메쉬 필터링 알고리즘에서의 Aliasing 문제를 양방향 필터를 적용하여 노이지를 제거하고, GPU 기반에서 설계해 고속화한다.

  • PDF

Particle-Based Extended Marching Cubes with Efficient Quadratic Error Function (효율적인 2차 오차 함수를 이용한 입자 기반 Extended Marching Cubes)

  • Yu-Bin Kwon;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.387-390
    • /
    • 2024
  • 본 논문에서는 효율적인 2차 오차 함수를 이용하여 입자 기반에서 EMC(Extended Marching Cubes) 알고리즘을 구현할 수 있는 새로운 알고리즘을 제안한다. Smoothing 커널(Kernels)을 통해 계산한 입자 평균 위치에서 레벨셋(Level-set)을 계산해 스칼라장을 구축한다. 그리고 난 뒤 SPH(Smoothed particle hydrodynamics)기반의 커널을 통해 밀도, 입자 평균 위치를 계산한다. 스칼라장을 이용해 등가 곡면(Isosurface)을 찾고 음함수로 표현된 표면을 구성한다. SPH 커널을 공간에서 미분하면 공간상의 어느 위치에서나 기울기를 계산할 수 있고, 이를 통해 얻어진 법선벡터를 이용하여 일반적인 EMC나 DC(Dual contouring)에서 사용하는 2차 오차 함수를 효율적으로 설계한다. 결과적으로 제안하는 방법은 메쉬와 같이 연결정보다 없는 입자 기반 데이터에서도 EMC 알고리즘을 구현하여 볼륨(Volume) 손실을 줄이고, 복잡한 음함수 표면을 표현할 수 있게 한다.

  • PDF

Development of Physics Simulation for Augmented Reality Billiards Content (증강현실 당구 콘텐츠를 위한 물리 시뮬레이션 개발)

  • Kim, Hong-Jik;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.150-159
    • /
    • 2022
  • In this paper, we propose a physics simulation for augmented reality (AR) billiards content. The characteristics of the physics simulation for the proposed AR billiards content are as follows. First, physical equations are derived by calculating the force and moment of inertia applied to the billiards ball to realize the motion of the billiards ball similar to the real one in the AR environment. Then, we determine the velocity and angular velocity of the virtual billiards ball associated with the rotation of the virtual billiards ball with respect to the impact point. Second, using some vectors such as incidnet vector, normal vector, reflection vector, the trajectory of the virtual billiards ball would be implement. these equations are applied to AR environment so that AR billiards content could be implement. This physics simulation allows users to feel like the real world using a virtual pool table and induce them to interact with the real environment. As a result of the experiment, the accuracy range between the path of the real billiards ball and the path of the virtual billiards ball was calculated to be 97.75% to 99.11%. Therefore, it was determined that the performance of the physics simulation for the AR billiards content proposed in this paper performs similarly to the path of the real billiards ball.

TLS (Total Least-Squares) within Gauss-Helmert Model: 3D Planar Fitting and Helmert Transformation of Geodetic Reference Frames (가우스-헬머트 모델 전최소제곱: 평면방정식과 측지좌표계 변환)

  • Bae, Tae-Suk;Hong, Chang-Ki;Lim, Soo-Hyeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2022
  • The conventional LESS (LEast-Squares Solution) is calculated under the assumption that there is no errors in independent variables. However, the coordinates of a point, either from traditional ground surveying such as slant distances, horizontal and/or vertical angles, or GNSS (Global Navigation Satellite System) positioning, cannot be determined independently (and the components are correlated each other). Therefore, the TLS (Total Least Squares) adjustment should be applied for all applications related to the coordinates. Many approaches were suggested in order to solve this problem, resulting in equivalent solutions except some restrictions. In this study, we calculated the normal vector of the 3D plane determined by the trace of the VLBI targets based on TLS within GHM (Gauss-Helmert Model). Another numerical test was conducted for the estimation of the Helmert transformation parameters. Since the errors in the horizontal components are very small compared to the radius of the circle, the final estimates are almost identical. However, the estimated variance components are significantly reduced as well as show a different characteristic depending on the target location. The Helmert transformation parameters are estimated more precisely compared to the conventional LESS case. Furthermore, the residuals can be predicted on both reference frames with much smaller magnitude (in absolute sense).

Distortion Analysis in Stereoscopic Images (스테레오 영상에서의 상의 왜곡 해석)

  • ;Y. Gruts
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.198-199
    • /
    • 2001
  • 본 논문은 스테레오 영상의 왜곡 현상을 분석하는 수학적인 해석 방법을 제안하였다. 스테레오 카메라의 중심과 투사기의 중심을 연결하는 직선이 스크린이 가지는 평면의 중심을 지나는 법선 벡터가 되고, 스테레오 카메라와 투사기의 두 렌즈의 광축이 스크린의 중심에 놓일 경우에 사진을 찍는 조건, 투영 조건 및 관측 조건에 해당하는 해석해를 유도하였다. 위 세 가지 조건에 따라 영상의 왜곡 정도가 바뀌게 되는데 왜곡을 최소한으로 만들 수 있는 조건식을 유도하였다.

  • PDF

3D Mesh Watermarking Using PEGI (PEGI를 이용한 3D 메쉬 워터마킹)

  • 이석환;김태수;김병주;권기룡;이건일
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.263-266
    • /
    • 2003
  • 본 논문에서는 패치별 EGI 분포를 이용한 3D 다각형 메쉬 모델 (polygonal mesh model) 워터마킹 알고리즘을 제안하였다 제안한 알고리즘에서는 기하학적 변형에 견고하기 위하여 3D 메쉬 모델을 6개 패치로 분할한다. 그리고 위상학적 변형에 견실한 특성을 가지는 EGI 분포를 각 패치별로 구한다. 그리고 동일한 워터마크 비트열을 각 패치의 EGI 분포 중에서 길이가 큰 면체에 투영된 메쉬 법선 벡터들에 각각 삽입한다. 본 논문에서 제안한 워터마킹 알고리즘의 성능 평가를 위한 모의 실험에서 워터마크가 삽입된 모델의 비가시성 및 다양한 공격에 대한 견고성이 우수함을 확인하였다.

  • PDF

Simplification of 3D Polygonal Mesh Using Non-Uniform Subdivision Vertex Clustering (비균일 분할 정점 군집화를 이용한 3차원 다각형 메쉬의 단순화)

  • 김형석;박진우;김희수;한규필;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1937-1945
    • /
    • 1999
  • In paper, we propose a 3D polygonal mesh simplification technique based on vertex clustering. The proposed method differentiates the size of each cluster according to the local property of a 3D object. We determine the size of clusters by considering the normal vector of triangles and the vertex distribution. The subdivisions of cluster are represented by octree. In this paper, we use the Harsdorff distance between the original mesh and the simplified one as a meaningful error value. Because proposed method adaptively determine the size of cluster according to the local property of the mesh, it has smaller error as compared with the previous methods and represent the small regions on detail. Also it can generate a multiresolution model and selectively refine the local regions.

  • PDF

The Study of Fisheye Lens for the Causes of Rapid Illumination Drop and the Ways to Correct on an Image Sensor due to an Ultra Wide Angle of View (어안렌즈 시야각의 광각화에 따른 조도저하의 원인과 개선방안에 관한 연구)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.179-188
    • /
    • 2012
  • Lenses with an ultra wide angle of view are usually called fisheye lenses since a fish can see an ultra wide panoramic view under water. As the angle of view for these kinds of lenses reaches a wide angle, the illumination on an image sensor is reduced by a rapid drop. In this paper, we discuss the causes and the ways to correct for a rapid drop. First, it is treated for the sign convention of directional cosine vectors and normal vectors on the curved surface by means of analytic geometry. And, from the fundamental discussion for these vectors, the rapid illumination drop is numerically analyzed for various kinds of causes by utilizing geometrical optics and radiometry as well as Fresnel equations derived from electromagnetic boundary conditions. As a result, we are able to get the full understanding for the rapid illumination drop and to propose ways to correct effects due to an wide angle of view.

Inverse kinematics of a Reclaimer: Redundancy and a Closed- Form Solution by Exploiting Geometric Constraints (원료불출기의 역기구학: 여유자유도와 구속조건을 이용한 닫힌 형태의 해)

  • Hong, K.S.;Kim, Y.M.;Shin, K.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.144-153
    • /
    • 1997
  • The inverse kinematics problem of a reclaimer which excavates and transports raw materials in a raw yard is investigated. Because of the geometric feature of the equipment in which scooping buckets are attached around the rotating disk, kinematic redundancy occurs in determining joint variable. Link coordinates are introduced following the Denavit-Hartenbery representation. For a given excavation point the forward kinematics yields 3 equations, however the number of involved joint variables in the equations is four. It is shown that the rotating disk at the end of the boom provides an extra passive degree of freedom. Two approaches are investigated in obtaining inverse kinematics solutions. The first method pre-assigns the height of excavation point which can be determined through path planning. A closed form solution is obtained for the first approach. The second method exploits the orthogonality between the normal vector at the excavation point and the z axis of the end-effector coordinate system. The geometry near the reclaiming point has been approximated as a plane, and the plane equation has been obtained by the least square method considering 8 adjacent points near the point. A closed form solution is not found for the second approach, however a linear approximate solution is provided.

  • PDF

3D Reconstruction Algorithm using Stereo Matching and the Marching Cubes with Intermediate Iso-surface (스테레오 정합과 중간 등위면 마칭큐브를 이용한 3차원 재구성)

  • Cho In Je;Chai Young Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.173-180
    • /
    • 2005
  • This paper proposes an effective algorithm that combines both the stereo matching and the marching cube algorithm. By applying the stereo matching technique to an image obtained from various angles, 3D geometry data are acquired, and using the camera extrinsic parameter, the images are combined. After reconstructing the combined data into mesh using the image index, the normal vector equivalent to each point is obtained and the mesh smoothing is processed. This paper describes the successive processes and techniques on the 3D mesh reconstruction, and by proposing the intermediate iso- surface algorithm. Therefore it improves the 3D data instability problem caused when using the conventional marching cube algorithm.