• Title/Summary/Keyword: 범퍼빔

Search Result 36, Processing Time 0.023 seconds

A Preliminary Study on the Structural Performance of the Bumper-Beams for High-Strength Steel Applications (고장력강판 적용을 위한 자동차 범퍼빔 구조성능의 기초연구)

  • Kang, Jong-Su;Song, Myung-Hwan;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.78-84
    • /
    • 2017
  • Consistent efforts have been made to reduce the weight of automotive parts by using lightweight materials. This has resulted in the replacement of conventional steels in car body structures with high-strength steels, and the current usage rate has reached 50%. This study examines the structural stiffness and energy absorption capability of bumper beams made of high-strength steels. New types of bumper beam cross sections are proposed.The structural stiffness and maximum bending force were computed via finite element analysis as about 25tons and 7.5tons/mm, and there were no significant differences among the proposedcross sections. Dynamic analysis was also carried out to investigate the energy absorption capabilities of the bumper beams, and the effects of materials and thickness reduction were analyzed. High-strength steel can be used to achieve weight reduction with comparable structural performance to conventional bumper beams.

Development of the Piecewisely-integrated Composite Bumper Beam Based on the IIHS Crash Analysis (IIHS 충격해석에 근거한 구간 조합 복합재료 범퍼 빔 개발)

  • Jeong, Chan-Hee;Ham, Seok-Wu;Kim, Gyeong-Seok;Cheon, Seong S.
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.37-41
    • /
    • 2018
  • The aim of the current work is to characterise a piecewisely-integrated composite bumper beam based on the IIHS bumper crash protocol. IIHS bumper crash FE analysis for an aluminium type bumper beam was carried out to get the information about the dominant loading types at several regions in the bumper beam during crash. In the meantime, robust stacking sequences against tension and compression have been searched for using FE analysis of a coupon type model. After determining most effective stacking sequences for tension and compression, three-point bending simulation was preliminarily carried out to investigate the combination performance of them. Finally, IIHS bumper crash FE analysis for the piecewisely-integrated composite bumper beam, which consisted of the combination of tension effective stacking sequence and compression efficacious stacking sequence, was conducted and the result was compared with other types of composite bumper beams. It was found that the newly suggested piecewisely-integrated composite bumper beam showed superior crashworthy behaviour to those of uni-modal stacking sequence composite bumper beams.

Optimum Shape Design of Bumper Beam Section using Intermediate Response Surface Models (중간매개반응표면모델을 이용한 범퍼 빔 형상의 최적 설계)

  • Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1122-1127
    • /
    • 2011
  • A bumper beam plays the important role of absorbing the bulk of bumper impact energy, so it is extremely important to determine the bumper beam section during the initial stage of car development process. This paper uses the Intermediate Response Surface Models (IRSM) technique for the bumper beam section optimization. By using this method, the nonlinear impact force-deflection curve is changed to an approximated curve. This can avoid the excessive 3D nonlinear FEM analysis during the optimization process. Then, the accuracy of the IRSM models is examined by comparing their results with those of the 3D nonlinear FEM. Finally it is shown that the proposed approach is effective to design the 2.5mph vehicle bumper section.

Design and Impact Analysis of Automotive Bumper Beam Using Aluminum Foam (알루미늄 폼을 사용한 자동차 범퍼 빔의 설계 및 충돌해석)

  • Bang, Seung-Ok;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1552-1558
    • /
    • 2011
  • In this paper, the automotive beam using aluminium foam is designed and the impact analysis is carried out. The analysis model is the beam of actual size with B- type section structure. At the frontal crash of low speed, ANSYS AUTODYN is used by predicting the behavior of deformation and its internal energy. By the use of 7075-T6 aluminum alloy, the weight is reduced as much as 55% than steel. The deformation at the bumper foam of aluminum is similar with that of steel and the impact energy reduction at aluminum is more than steel. The foam filled with aluminum as much as 50 % has more impact energy absorption than the completely filled aluminum foam.

Laser Beam Irradiation Strengthening for Weight Reduction of Automobile Bumper Beam (I) (자동차 범퍼빔 경량화를 위한 레이저 빔 조사 강화(I))

  • Suh, Jeong;Lee, Jae-Hoon;Oh, Sang-Jin;Lee, Moon-Yong;Lee, Gyu-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.228-234
    • /
    • 2002
  • The CO$_2$ laser beam irradiation strengthening of 35kgf/mm$_2$ grade steel sheet is investigated to reduce the weight of bumper beam. The increase of tensile strength is dominated by the number of fully penetrated melting lines. The optimal laser irradiation pattern is obtained by 3-point bending test of hat-type specimens. Laser should be irradiated not only on the center specimen densely in the width direction, but also on the edge densely in the longitudinal direction. Local laser strengthening may be effective for the weight reduction of automobile bumper beam.

Development of n Hybrid Bumper Beam Using Simulation (시뮬레이션을 이용한 하이브리드 범퍼 빔 개발)

  • Lee, J.K.;Kang, D.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.326-330
    • /
    • 2007
  • Bumper back beam is one of the essential structural components of front-end module. It should be designed to withstand a minor bump in low-speed collision, 2.5 mph crash test for example. And weight reduction is always important problem in the design of almost all the parts in car for energy saving. So, the key issues in shape design of a bumper are weight reduction and the performance in 2.5mph crash test. In this study, a light weight and high performance bumper back beam model was developed using analytical approach based on mechanics and FE simulation together.

  • PDF

Development of Lightweight & High Strength Bumper Beam of 7XXX Series Aluminum Alloy (경량 고강도 알루미늄 범퍼 빔 개발)

  • Lee W. S.;LEE M. Y.;Kim D. U.;Kang D. P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.30-33
    • /
    • 2005
  • Although extruded aluminium bumper beam has been commonly used in advanced car makers, there are not so much precedent for it's localization. For the localization of aluminum bumper beam of 7XXX series, benchmarking, material modifications of 7XXX series aluminum alloy, section design of beam, impact analysis had been performed in this study. High fuel efficiency and weight reduction could be achieved by using aluminum bumper beam of which the weight is lighter than that of steel. Moreover, it is expected to reach higher recycling rate by substituting aluminum for steel.

  • PDF