최근, 범죄가 증가함에 따라 범죄를 예측하고 예방하는 것은 사회의 중요한 이슈이며 정부 및 지자체는 다양한 방법론을 활용하여 범죄를 사전에 막고자 노력하고 있다. 데이터마이닝은 범죄예측 및 예방에 활용되는 대표적인 방법론이며, 범죄 패턴 분석, 범죄 발생 예측 등 다양한 분야에서 연구되고 있다. 그러나 데이터마이닝의 결과가 범죄학에서의 범죄 환경요소와 어떤 관련이 있는지 혹은, 사건해결에 어떤 도움을 줄 수 있는지에 대한 연구는 이루어지고 있지 않다. 따라서 본 논문에서는, 범죄학에서 범죄의 발생과 범죄 환경요소들의 상호 관련성을 보이고 범죄 발생과 관련된 환경요소와 데이터마이닝에 활용되는 변수 간의 관계를 정의하고자 하였다. 또한, 국내 보호관찰소에서 보관되고 있는 절도범죄 데이터를 사용하여 실제로 데이터마이닝의 결과가 범죄 환경요소와 어떤 관련이 있는지를 보이기 위해 군집분석을 적용하였다. 그 결과 각 군집별로 범죄가 발생하는 환경에 차이가 있었으며, 이를 활용하여 데이터마이닝이 범죄학관점에서 범죄 예측 및 예방 활용에 유의미함을 보였다.
현대 사회는 다양한 범죄들이 발생하고 있고, 범죄를 예방하기 위한 연구가 진행되고 있다. 기존의 범죄에 관련된 연구들은 범죄가 발생하는 공간과 지리정보를 분석하거나, 범죄자들의 범죄 유형을 분석하는 연구들이 진행되어 왔다. 그러나 기존의 연구들은 지리적, 심리학적인 연구를 통해 범죄가 발생하는 지역과 동기들을 분석하여 범죄를 예방하기 위한 연구들이 대부분이다. 본 논문에서는 마코프 프로세서를 도입하여 범죄를 예측하기 위한 모델링을 제시한다. 여러 범죄 중 살인, 공무원 범죄, 폭력의 범죄 발생 건수를 사용하여 시간에 따른 범죄 발생 건수를 예측하였다. 본 논문에서 제시한 범죄 예측 모델링에서 사용될 범죄 발생 평균값에 범죄가 발생한 기간에 발생한 범죄 발생 건수의 전체 평균값, 1년 평균값, 최근 평균값으로 분류하여 어느 것이 예측 확률을 높일 수 있는 지 비교하였고, 최근 평균값을 적용하는 것이 범죄 발생 예측확률을 높일 수 있음을 확인하였다.
기존의 범죄 예측 방법들은 범죄 발생을 예측하기 위해 기존 기록을 이용하였다. 그러나 이러한 범죄 예측 모델은 데이터를 갱신하는데 어려움이 있다. 범죄 예측을 향상시키기 위해서 소셜 네트워크 서비스(SNS)를 이용하여 범죄를 예측하는 연구들이 진행되었지만, SNS 데이터와 범죄 기록 사이의 관계에 대한 연구는 미흡하다. 따라서, 본 논문에서는 SNS 데이터와 범죄 발생 사이의 관계를 범죄 예측의 관점에서 분석하였다. 잠재 디리클레 할당(LDA)을 이용하여 범죄 발생과 관련된 단어를 포함하는 트윗을 추출하였고, 범죄 기록에 따른 트윗 빈도의 변화를 분석하였다. 범죄 관련 단어를 포함하는 트윗의 빈도를 계산하고, 범죄 발생에 따라서 트윗 빈도를 분석하였다. 범죄가 발생하였을 때, 범죄와 관련된 트윗의 빈도가 변화하였다. 게다가, 범죄 발생 전후에 트윗 빈도가 특정 패턴을 보이기 때문에 SNS 데이터가 범죄 예측 모델에 도움이 될 것이다.
연쇄 살인과 같은 강력 범죄의 심각성이 사회적 이슈가 되면서 이에 대한 효과적인 과학 수사의 필요성이 증가되고 있다. 특히, 연쇄 범죄 데이타에 대한 공간 분석을 통해 범죄자의 거점 위치를 예측하는 지리적 프로파일링과 미래에 발생될 범행 장소의 위치, 즉 기존 범행에 이어 일어날 다음 범행 위치 예측에 관한 연구가 활발하다. 그러나, 이와 관련된 기존 연구는 물리적인 거리에 대한 통계적 기법을 적용하거나 단순한 공간적 분석만을 적용하므로 낮은 예측 정확도를 보이는 문제점이 있다. 본 논문에서는 이러한 문제를 해결하고 보다 효과적인 연쇄 범죄 수사를 지원하는 방법으로써 연쇄 범죄 발생에 대한 공간적 시간적 분포 특성에 따른 시공간 패턴을 기반으로 다양한 시공간 분석을 적용하는 거점 위치 예측 기법과 다음 범행 위치 예측 기법을 제안한다. 제안 기법은 중심축을 따라 나타나는 선형 분포의 연쇄 범죄에서도 정확도 높은 예측이 가능하고, 다수의 서로 다른 군집들에 대해 각 군집내 범행에 대한 지역적 예측과 대상 영역의 모든 범행에 대한 전역적 예측이 가능하다. 또한 방향 패턴을 활용하여 다음 범행 위치 예측 정확도도 개선하였다.
본 연구는 범죄를 발생시키는데 관련된 여러가지 요인들을 기반으로 범죄 예측 모델을 생성하고 설명 가능 인공지능 기술을 적용하여 인천 광역시를 대상으로 범죄 발생에 영향을 미치는 요인들을 분석하였다. 범죄 예측 모델 생성을 위해 XG Boost 알고리즘을 적용하였으며, 설명 가능 인공지능 기술로는 Shapley Additive exPlanations (SHAP)을 사용하였다. 기존 관련 사례들을 참고하여 범죄 예측에 사용된 변수를 선정하였고 변수에 대한 데이터는 공공 데이터를 수집하였다. 실험 결과 성매매단속 현황과 청소년 실종 가출 신고 현황이 범죄 발생에 큰 영향을 미치는 주요 요인으로 나타났다. 제안하는 모델은 범죄 발생 지역, 요인들을 미리 예측하여 제시함으로써 범죄 예방에 사용되는 인력자원, 물적자원 등을 용이하게 쓸 수 있도록 활용할 수 있다.
영화 <마이너리티 리포트>가 점점 현실화되고 있다. '빅데이터'를 기반으로 한 범죄 예측 지도가 만들어지고, 미국에서는 이를 활용한 '헌치램' 같은 범죄 예측 시스템이 이미 실용화되고 있다. 다음 범죄가 어디서 일어날지 예측해 영리하게 대처하는 빅데이터 세계를 들여다보자.
현대 사회는 다양한 강력 범죄들이 발생하고 있다. 모든 범죄들은 발생한 후에 대처를 하는 것보다 사전에 범죄를 예방하는 것이 가장 중요하다. 이를 위해서 다양한 범죄를 예방하기 위한 연구가 진행되었다. 하지만 기존 연구 방법들은 사회학적, 심리학적인 요인들을 분석하여 범죄의 발생 확률과 발생 동기 등을 분석하여 예방하고자 하는 노력이 대부분이다. 그러므로 본 논문에서는 마코프 체인 방식을 사용하여 시간에 따른 범죄를 예측하기 위한 연구를 수행하고자 한다. 5대 강력 범죄인 강도, 살인, 강간, 절도, 폭력에 대하여 수집된 범죄 발생 건수 자료를 사용해 범죄 유형별 시간에 따른 범죄 발생 예측을 위한 모델링을 구현한다. 그리고 범죄 발생 유형별 범죄 발생 예측 값과 실제 발생 값을 비교해 본 논문에서 제안한 시간에 따른 범죄 발생 예측 모델링의 타당성을 검토하였다. 본 논문에서 제안한 범죄 발생 예측 기법이 실제로 강도, 살인, 강간 등과 같은 강력 범죄에 대해서는 최대 값을 임계값으로 적용하고, 나머지 범죄에 대해서는 평균값을 적용하는 방식을 사용함으로써 범죄 발생 예측확률을 높일 수 있을 것으로 연구되었다. 향후 범죄 유형별로 시간에 따른 범죄발생 예측율과 실제 값이 다르게 적용되는 사례들을 추가 조사하여 연구의 폭을 넓히고자 한다.
최근 강도, 성폭력과 같은 중범죄들의 수위가 높아짐에 따라 범죄 예측 및 예방에 대한 중요성이 강조되고 있다. 정확한 범죄예측을 위해서는 과거 범죄기록 데이터를 기반으로 정확도 높은 범죄분류모델을 만드는 작업이 필요하며, 신속한 범죄 대응을 위한 시스템 인터페이스가 요구된다. 그러나 기존의 범죄 요소 분석 연구는 데이터 전처리에 대한 난해함으로 인해 정확도 측면에서 한계를 보이며, 범죄 모니터링 시스템은 방대한 양의 범죄 사건기록 분석 결과를 단순 제공함으로써 사용자에게 효과적인 모니터링 기능을 제공하지 못하고 있다. 따라서 본 연구는 실시간 범죄 예측을 위한 랜덤 포레스트 알고리즘 기반의 범죄 유형 분류모델 및 시스템 인터페이스 디자인 요소를 제안한다. 실험을 통해 본 연구는 제안하는 모델이 단순히 범죄기록 데이터만으로 범죄유형을 분류하는 모델 보다 우수함을 입증하였고, 기존의 범죄 모니터링 시스템 분석을 통해 실시간 범죄 모니터링을 위한 시스템 인터페이스를 설계 및 구현하였다.
본 논문에서는 빅 데이터를 이용하여 범죄 발생 요인에 따른 범죄 예측 알고리즘을 구현했다. 제안된 알고리즘은 대검찰청에서 수집하여 공개한 범죄관련 빅 데이터를 사용하였으며, 통계분석을 통해 서울시의 2011-2013년 범죄발생 패턴을 분석했다. 범죄예측 알고리즘 구현을 위해 베이지안 네트워크를 적용하였으며, 범죄발생 요인으로서 공간적, 인구적, 사회적 특성 및 요일, 시간, 날씨와 같은 기타 요인으로 베이지안 네트워크의 노드를 구성하였다. 제안한 알고리즘의 구현 결과, 서울시의 각 구별로 범죄발생 패턴이 다르다는 것을 파악할 수 있었으며, 다양한 범죄발생 패턴을 분석하고, 범죄예측 알고리즘의 정확도를 확인할 수 있었다.
현대 사회는 다양한 범죄가 발생하고 있다. 범죄를 예방하기 위해서는 범죄를 예측 하는 것이 필요하고, 범죄 예측에 관한 다양한 연구가 진행 중에 있다. 범죄 관련 데이터는 검찰청에서 1년에 한번 통계처리를 하여 발표하고 있다. 그러나 통계처리 된 자료는 현재 시점을 기준으로 약 2년 전의 자료로 현재 발생하는 범죄에 대한 데이터로 적합하지 않다. 본 논문은 범죄를 예측하는 데이터로 네이버 트랜드를 적용했다. 네이버 트랜드의 웹 검색 트래픽을 이용하면, 현재 발생하는 범죄에 대한 관심도 데이터를 얻을 수 있다. 네이버 웹 검색 트래픽 데이터를 이용하여 범죄를 예측할 수 있는 모델링을 구성하였고, 예측 이론으로 마코프 체인을 적용하였다. 다양한 범죄 중 살인, 방화, 강간을 대상으로 예측 모델링에 적용하였고, 결과 값을 분석하였다. 그 결과 실제 발생한 범죄 발생 빈도수를 기준으로 20%이내의 유사한 결과를 얻었다. 향후에는 계절의 특성을 고려한 범죄 예측 모델링에 대한 연구를 진행할 예정이다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.