• Title/Summary/Keyword: 범람도

Search Result 1,004, Processing Time 0.031 seconds

A Study on Construction Techniques of River Topography for Flood Inundation Analysis (홍수범람해석을 위한 하천지형 구축기법에 관한 연구)

  • Lee, Jungsik;Moon, Changgeon;Kim, Seokdong;Cho, Sunggeun;Shin, Shachul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.59-68
    • /
    • 2012
  • The objective of this study is a comparison with simulation results of flood inundation by the construction techniques of river topography. For construction of river topography, the data used in this study are 1:5,000 topographic DEM, ASTER DEM and SRTM DEM provided by WMS. Also HEC-RAS and HEC-GeoRAS are applied to analyze of inundation depth and area. Flood inundations are simulated by 3 techniques in return periods and compared with the results. The results of this study are as follows; (1) Comparative analysis of the results shows that they have only a little difference in construction techniques of river topography at midsized catchment. (2) Flood inundations by ASTER DEM is to estimate larger than the other techniques in flood area (3) In case of SRTM DEM, the application can be expected to make use in the fields because of proper results in flood inundation analysis.

Flood Damage Estimation causing Backwater due to the Blockage by Debris in the Bridges (교량에 집적된 유송잡물의 배수영향에 의한 홍수피해 분석)

  • Kim, Soo-Jun;Chung, Jae-Hak;Lee, Jong-Seol;Kim, Ji-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.59-66
    • /
    • 2007
  • The bridge crossing river is the one of the major factors causing backwater level rising. Furthermore, the bridges in the mountainous areas increase the flood damage in the upstream of the bridge due to the blockage by debris. In this research, the effects of debris to the magnitude of flood damage in the study river basin were simulated by using HEC-RAS and HEC-GeoRAS models. With assumption that the backwater caused by debris blocking the space between bridge piers is the only factor causing inundation, the unsteady flow simulation was carried out with various case studies. The potential inundation area with the overflow locations and volumes could be estimated as the results of simulation. However, the simulation results also reveal the limitations of inaccurate estimation of inundation area and depth. To overcome these hindrances, DEM and satellite images were applied to the simulation. By readjusting the inundation area using digital maps and satellite images and calibrating overflow volume and depth using DEM, the accuracy of simulation could be increased resulting more accurate flood damage estimation.

Applicability of Inundation Simulation with the Coupled Tide-Surge Model (조석-해일 결합모형의 범람 적용성)

  • Park, Seon-Jung;Kang, Ju-Whan;Yoon, Jong-Tae;Jung, Tae-Sung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.270-278
    • /
    • 2010
  • Applicability of the MIKE21 model as a real time coupled tide-surge model had been examined at the previous study. In this study, another applicability of the model as an inundation model is also examined. Prior to real cases, effect of artificial structures on the inundation is analyzed. The results show that inundation depth is not altered, while inundation area is lessened as a result of decreased inundation speed. Comparative study between the coupled model and an uncoupled storm surge model is also carried out at the Masan coastal zone, which shows the coupled model is considered to be plausible at the time to maximum inundation, while both models show similar results at the inundation area and inundation depth.

Three-Dimensional Laboratory Experiments for Tsunami Inundation in a Coastal City (지진해일 범람이 해안도시에 미치는 영향에 대한 3차원 수리모형실험)

  • Kim, Kyuhan;Park, Hyoungsu;Shin, Sungwon;Cox, Daniel T.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.400-403
    • /
    • 2012
  • Laboratory experiments were conducted for tsunami inundation to an urban area with large building roughness. The waterfront portion of the city of Seaside which is located on the US Pacific Northwest coast, was replicated in 1/50 scale in the wave basin. Tsunami heights and velocities on the inundated land were measured at approximately 31 locations for one incident tsunami heights with an inundation height of approximately 10 m (prototype) near the shoreline. The inundation pattern and speed were more severe and faster in some areas due to the arrangement of the large buildings. Momentum fluxes along the roads were estimated using measure tsunami inundation heights and horizontal fluid velocities. As expected, the maximum momentum flux was near the shoreline and decreased landward. Inundation heights and momentum flux were slowly decreased through the road with buildings on each side. The results from this study showed that the horizontal inundation velocity is an important factor for the external force of coastal structures.

Classification and Analysis of Korea Coastal Flooding Using Machine Learning Algorithm (기계학습 알고리즘에 기반한 국내 해수범람 유형 분류 및 분석)

  • CHO, KEON HEE;EOM, DAE YONG;PARK, JEONG SIK;LEE, BANG HEE;CHOI, WON JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • In this study, Information for the case of seawater flooding and observation data over a period of 10 years (2009~2018) was collected. Using machine learning algorithms, the characteristics of the types of seawater flooding and observations by type were classified. Information for the case of seawater flooding was collected from the reports of the Korea Hydrographic and Oceanographic Agency (KHOA) and the Korea Land and Geospatial Informatics Corporation. Observation data for ocean and meteorological were collected from the KHOA and the Korea Meteorological Agency (KMA). The classification of seawater flooding incidence types is largely categorized into four types, and into 5 development types through combination of 4 types. These types were able to distinguish the types of seawater flooding according to the marine weather environment. The main characteristics of each was classified into the following groups: tidal movement, low pressure system, strong wind, and typhoon. Besides, in consideration of the geographical characteristics of the ocean, the thresholds of ocean factors for seawater flooding by region and type were derived.

Flood Modeling in the Donam Stream Using Rainfall-Runoff Model (강우-유출모형을 이용한 도남천 지역 하천범람 모델링)

  • Lee, Dong Hyeok;Jun, Kye Won;Kim, Il Dong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.167-167
    • /
    • 2021
  • 2018년 재해연보에 따르면 최근 10년간 자연재해는 태풍과 호우에 의한 평균피해액이(301,680백만원) 전체 재해평균피해액(344,124백만원)의 87.6%로 나타났다. 이처럼 물 관련 재해가 다른 재해에 비해 상대적으로 큰 비중을 차지하는 대표적 원인은 국지성 집중호우의 발달과 개발로 인한 불투수면적의 증가 및 지표면 유출량의 증가등이 있다. 이러한 요인들로 하천범람이 지속적으로 증가하고 있으며 이에 대응할 치수계획수립이 필요한 실정이다. 세종특별자치시의 하천기본계획(2020.01)에 따르면 세종특별자치시의 금남면 도남리의 도남천지구는 제방고 및 여유고 부족과 인명 및 재산피해 우려 지역으로 하천재해 위험지구로 선정되었다. 따라서 본 연구의 목적은 도남천지구에 강우-유출모형을 적용하여 빈도별 월류위치 파악과 하천범람지도를 작성하여 대피범위등 유역치수계획수립시 기초자료에 활용 되고자 한다. 강우분석을 위한 강우관측소 선정은 티센망 확인을 통하여 공주시(반포중) 강우관측소를 선정하였다. 강우분석은 자료기간이 짧은 강우관측소에서도 확률강우량을 산정할 수 있는 지역빈도해석을 하였으며 분석결과 적합한 확률분포형은 GEV인 것으로 나타났다. 빈도별 홍수량 산정을 위해 HEC-HMS모형을 이용하였으며 산정방법은 깅우-유출 관계 분석 방법에 의한 다양한 합성단위도 방법중 일관성과 객관성이 입증되어 온 Clark단위도 법을 사용하였다. 산정한 홍수량을 HEC-RAS모형에 적용하여 월류구간을 파악하였으며 월류위치 및 대피범위를 가시화 하기 위해 HEC-GeoRAS모형을 사용하여 빈도별 하천범람지도를 작성하였다. 본 연구는 도남천지구에 빈도별 하천범람지도를 작성 하였다. 이를 통하여 하천범람시 대피범위등 유역치수계획 수립 시 도움이 될 것으로 판단된다.

  • PDF

An Automated OpenGIS-based Tool Development for Flood Inundation Mapping and its Applications in Jeju Hancheon (OpenGIS 기반 홍수범람지도 작성 자동화 툴 개발 및 제주 한천 적용 연구)

  • Kim, Kyungdong;Kim, Taeeun;Kim, Dongsu;Yang, Sungkee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.691-702
    • /
    • 2019
  • Flood inundation map has various important roles in terms of municipal planning, timely dam operation, economic levee design, and building flood forecasting systems. Considering that the riparian areas adjacent to national rivers with high potential flood vulnerability conventionally imposed special cares to justify applications of recently available two- or three-dimensional flood inundation numerical models on top of digital elevation models of dense spatial resolution such as LiDAR irrespective of their high costs. On the contrary, local streams usually could not have benefits from recent technological advances, instead they inevitably have relied upon time-consuming manual drawings or have accepted DEMs with poor resolutions or inaccurate 1D numerical models for producing inundation maps due mainly to limited budgets and suitable techniques. In order to efficiently and cost-effectively provide a series of flood inundation maps dedicatedly for the local streams, this study proposed an OpenGIS-based flood mapping tool named Open Flood Mapper (OFM). The spatial accuracy of flood inundation map derived from the OFM was validated throughout comparison with an inundation trace map acquired after typhoon Nari in Hancheon basin located in Jeju Island. Also, a series of inundation maps from the OFM were comprehensively investigated to track the burst of flood in the extreme flood events.

Study on Behaviour of Flood Wave-front Varied with Levee Breach Speed in Flat Inundation Area (평탄지형 제내지에서의 제방붕괴속도에 따른 범람홍수파 선단 거동에 관한 연구)

  • Yoon, Kwang Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.537-544
    • /
    • 2017
  • An experimental study was carried out to investigate the characteristics of the propagation distance of a flood wave considering the levee failure speed in a flat inundation area. The Ritter solution for one dimensional flow was considered to formulate the experimental results and a representative form with coefficients of k and m, which consider the three dimensional flow characteristics, was applied. The experiments showed that the propagation velocity of the wave front in the inundation area was influenced by the levee breach speed as well as the initial water level, which is a significant variable representing the flood wave behavior. In addition, coefficients k and m are not constants, but variables that vary with levee breach speed. An empirical formula was also suggested using the experimental results in the form of the relationships between k and m. In this study, a large-scale experiment for flood inundation was carried out to examine the behavior of flooding in the inundated area and the relationships between the levee breach speed and wave-front propagation velocity were suggested based on the experimental results. These research results are expected to be used as the baseline data to draw a flow inundation map, establish an emergency action plan, and verify the two-dimensional numerical model.

Applicability Evaluation of Flood Inundation Analysis using Quadtree Grid-based Model (쿼드트리 격자기반 모형의 홍수범람해석 적용성 평가)

  • Lee, Dae Eop;An, Hyun Uk;Lee, Gi Ha;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.655-666
    • /
    • 2013
  • Lately, intensity and frequency of natural disasters such as flood are increasing because of abnormal climate. Casualties and property damages due to large-scale floods such as Typhoon Rusa in 2002 and Typhoon Maemi in 2003 rapidly increased, and these show the limits of the existing disaster prevention measures and flood forecasting systems regarding irregular climate changes. In order to efficiently respond to extraordinary flood, it is important to provide effective countermeasures through an inundation model that can accurately simulate flood inundation patterns. However, the existing flood inundation analysis model has problems such as excessive take of analysis time and accuracy of the analyzed results. Therefore, this study conducted a flood inundation analysis by using the Gerris flow solver that uses quadtree grid, targeting the Baeksan Levee in the Nakdong River Basin that collapsed because of a concentrated torrential rainfall in August, 2002. Through comparisons with the FLUMEN model that uses unstructured grid among the existing flood inundation models and the actual flooded areas, it determined the applicability and efficiency of the quadtree grid-based flood inundation model of the Gerris flow solver.

Characteristics of the Inundation and Process of Making a Flood Map According to the Levee Break Conditions in Urban Stream - Jungrang Experimental Basin - (제방붕괴조건에 따른 도시하천의 홍수범람 특성 및 홍수지도 작성 - 중랑천 시험유역을 중심으로 -)

  • Lee, Jong-Tae;Hur, Sung-Chul;Kim, Jeong-Hoi;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.383-394
    • /
    • 2006
  • This study is for the inundation damage analysis caused by levee break, and for the applicability of GIS tool to make inundation map in the Jungrang stream basin which is one of the representative urbanized area in Korea. The FLDWAV was applied to the actual flood in 1998 to calibrate the parameters, and was used under the flood conditions of 100, 200 years and PMF for the analysis of inundation caused by the levee breach. As the conditions of the levee break, the duration of break(10, 30, 60 min), the width of break(10, 20, 30m) and the location of the break are considered. We found out that the range and the volume of the inundation are strongly influenced by the location of the levee break, the break width in order. And, we compared the two processes of making the inundation map using WMS and ArcView model. The Process 1 which use only WMS has the benefit by its simplicity but there could be considerable errors in making the inundation map, while Process 2 where the ArcView model is introduced to WMS has the capability of making detailed topography map but needs more process time. This study could contribute to levee breach flood analysis and making flood map to establish the EAP(Emergency Action Plan) in the urban basin.