화물 선박의 전복사고가 매해 발생하고 있음에도 화물을 측정하지 않고 서류에 의존하는 방식으로 화물을 선적하고 있습니다. 우리는 사고의 원인을 사전에 차단할 수 있는 자동 계측 시스템을 연구하였습니다. 본 논문의 시스템은 LiDAR 센서를 이용하여 비규격 화물이 멈추지 않고 자동 계측되어 인력과 시간의 소요를 줄이고 산출된 체적과 3D 모델을 제공합니다. 게다가 화물 차량에 실린 화물을 내리지 않고도 화물의 체적을 산출할 수 있어 항만의 효율성을 향상할 수 있을 것으로 기대합니다.
Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.
본 논문에서는 YOLO(You Only Look Once) 기반의 교통 신호등 인식을 통해 오토바이 운전자의 신호 위반 여부를 확인하는 기술을 제안하고자 한다. 오토바이 전면에 탑재될 하드웨어 모듈은 YOLO 기반의 객체 탐지를 위한 카메라 모듈과 라즈베리 파이, 신호 위반 시 오토바이의 현재 위치 정보 수집을 위한 GPS 모듈, 그리고 수집 정보를 클라우드 DB로 전송하는 LoRa 통신 모듈로 구성된다. 소프트웨어 기능의 핵심은 오토바이의 교통 신호 위반 여부를 판단하는 컴포넌트이다. 본 논문에서는 카메라 앵글 내에 있는 교통 신호등 객체를 먼저 인식한 후 빨간색 신호일 때에만 이 객체가 화면 상에서 오른쪽(좌회전의 경우)이나 위쪽(직진의 경우)으로 사라지면 신호 위반으로 판단하는 기능을 제안한다. 그리고, 오토바이 운전자가 신호를 위반한 것으로 판단되면 운전자의 신상 정보(이름, 휴대폰 번호 등), 오토바이 정보(번호판, 등록번호 등), 위반 상황의 스냅샷 사진, 위치 정보 및 날짜/시각 정보를 클라우드 DB로 전달하도록 한다. 이러한 위반 정보는 운전자의 스마트폰에 푸시 알림으로 전달하여 위반 사실을 인지하도록 하고, 관할 경찰서에서는 신호 위반 스티커를 발부하는 데 활용될 수 있으므로 궁극적으로는 오토바이 운전자의 교통 신호 위반을 사전에 방지할 수 있을 것으로 기대된다.
The automated gate operating system is developed in this paper that controls the information of container at gate in the ACT. This system can be divided into three parts and consists of container identifier recognition car plate recognition container deformation perception. We linked each system and organized efficient gate operating system. To recognize container identifier the preprocess using LSPRD(Line Scan Proper Region Detection)is performed and the identifier is recognized by using neural network MBP When car plate is recognized only car image is extracted by using color information of car and hough transform. In the port of container deformation perception firstly background is removed by using moving window. Secondly edge is detected from the image removed characters on the surface of container deformation perception firstly background is removed by using moving window. Secondly edge is detected from the image removed characters on the surface of container. Thirdly edge is fitted into line segment so that container deformation is perceived. As a results of the experiment with this algorithm superior rate of identifier recognition is shown and the car plate recognition system and container deformation perception that are applied in real-time are developed.
이 논문의 목적은 낮은 화소 수나 어두운 렌즈를 사용하는 CCTV는 자동차의 번호판이나 범죄자를 인식하기 어렵기 때문에 화소수를 높이고 밝은 렌즈를 사용하기 위함이다. 구면수차와 왜곡수차를 줄이기 위하여 2매의 비구면 렌즈를 적용하고 300만 화소에 적절한 줌렌즈의 설계와 이에 의한 특성을 제시하였다. 초점거리는 6-60mm를 적용하였고 F수는 1.2를 구현하였다. 적외선 보정을 실시하여 주야 초점거리가 같도록 설계하였다. 결과적으로 이 규격은 6-60mm 10배줌 렌즈의 규격 중 가장 우수하다. 이 렌즈를 적용한다면 50m거리에서 얼굴이나 차번호의 인식이 가능하다. 향후 이 렌즈의 자동화 구현이 필요하다.
본 논문에서는 영상처리를 통해 GUI를 기반으로 산업용 디지털 기기의 측정값을 인식하고 기록하는 시스템을 제안하고 구현하였다. 제안한 시스템은 기존의 차량번호판 인식과 달리 산업용 측정기의 LCD화면에 표시되는 값은 디지털 숫자로 표시하고 있어 소수점과 마이너스 표시, LCD보호유리의 반사광등의 여러 가지 장애요인을 고려하였다. LCD화면에 표시된 숫자를 인식하기 위해 블롭 레이블링 (blob-labeling)기법을 사용하였으며, 인식한 숫자 이미지는 템플릿 매칭(template matching)을 통해 숫자가 무엇인지 판별하여, 인식한 측정값을 측정시간과 함께 저장장치에 기록하였다. 본 논문에서 제안한 시스템은 산업현장에서 제품의 내외경이나 높이를 측정하고 기록할 때 수기로 작성하는 번거로움을 줄이고, 수기로 작성 시 잘못 기입하는 경우를 방지함으로써 생산 공정 과정에서 오류가 없는 효율적인 공정관리가 가능하게 하였다.
신경계의 뉴런 구조는 흥분 뉴런과 억제 뉴런으로 구성되며 각각의 흥분 뉴런과 억제 뉴런은 주동근 뉴런(agonistic neuron)에 의해 활성화되며 길항근 뉴런(antagonist neuron)에 의해 비활성화 된다. 본 논문에서는 인간 신경계의 생리학적 뉴런 구조를 분석하여 퍼지 논리를 이용한 생리학적 퍼지 신경망을 제안한다. 제안된 구조는 주동근 뉴런에 의해 흥분 뉴런이 될 수 있는 뉴런들을 선택하여 흥분시켜 출력층으로 전달하고 나머지 뉴런들을 억제시켜 출력층에 전달시키지 않는다. 신경계를 기반으로 한 제안된 생리학적 퍼지 신경망의 학습구조는 입력층, 학습 데이터의 특징을 분류하는 중간층, 그리고 출력 층으로 구성된다. 제안된 퍼지 신경망의 학습 및 인식 성능을 평가하기 위해 정확성이 요구되는 의학의 한 분야인 기관지 편평암 영상 인식과 영상 인식의 주요 응용 분야인 차량번호판 인식에 적용하여 기존의 신경망과 성능을 비교 분석하였다. 실험 결과에서는 제안된 생리학적 퍼지 신경망이 기존의 신경망보다 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 인식에 있어서도 우수한 성능이 있음을 확인하였다.
본 논문은 도로상에서 끼어들기 위반 차량을 자동으로 추적하는 효과적인 방법을 설명한다. 이 방법은 이미지 시퀀스를 역방향으로 재생하면서 광류추정을 기본으로 하는 KLT 추적 알고리즘을 적용한다. 어떤 기준이 되는 순간부터 시간의 역방향으로 재생하는 이미지 시퀀스를 사용하여 추적의 정확성을 높이는 것이 본 논문의 중요한 아이디어이다. 기준이 되는 순간은 일반적으로 인식카메라가 번호판을 잘 읽을 수 있는 순간이다. 또한 추적 물체의 가장 큰 이미지를 얻는 시점이기도 하다. 추적하려는 물체의 이미지가 클수록 광류 추정을 위한 추적의 특징점을 더 많이 찾을 수 있으며 특징점이 많으면 추적의 결과도 좋다. 인식카메라로 차량의 번호판을 읽은 다음 끼어들기 위반이 의심되면, 광역을 촬영하는 추적카메라의 동영상에서 이 차량의 역방향 이미지 시퀀스를 추출한다. 본 논문은 추적에 이용하는 일반적인 방법인 정방향 이미지 시퀀스와 본 논문이 제안하는 역방향 영상이미지를 이용한 추적 실험의 결과를 비교하였다. 또한 역방향 이미지 시퀀스를 이용한 본 추적의 알고리즘을 자동단속장비에 적용할 수 있다는 결과를 보여준다.
도로법에 의거한 도로교통량 상시조사는 매설식 AVC를 통해 12종 차종분류가 이루어지고 있다. 하지만 매설식 AVC 장비는 차량과의 마찰, 도로 균열, 소성변형, 도로공사로 인한 센서의 물리적 파손 등으로 인해 장비 가동률이 낮고, 수집 정보의 정확도와 신뢰도 저하 문제가 발생하고 있다. 이로인해 장비보수 등 유지비용 또한 증가하고 있다. 이러한 문제를 해결하고자 비매설식 AVC 장비 도입을 위한 연구가 진행되고 있으나, 차종을 분류하기 위해 복수의 장비 또는 교통량 정보 매칭을 위한 별도의 DB 구축·운영이 필요하였다. 이에 본 연구에서는 자동차 관리법에 근거하여 운영 중인 자동차관리정보시스템(VMIS)의 차량 제원 정보와 번호판 자동인식 기술(ANPR)을 활용한 12종 차종분류 방안을 마련하고자 하였다. 이를 통해 기존 도로교통량 조사체계를 개선하고 자동차 제원 정보를 활용하여 친환경 차량 분류 등 도로교통량 통계 고도화, 다변화에 기여할 수 있을 것으로 기대된다.
빠르게 성장하고 있는 현대 사회에서 생산 공정에 비전 시스템을 활용하여 자동화 하고자 하는 수요가 급증하고 있는 추세이다. 일반적으로 영상 인식은 주로 자동차 번호판과 같은 양각 문자에 대한 연구가 대부분으로, 음각 문자 인식에 대한 연구가 매우 미미한 상황이다. 특히 타이어 표면과 같은 고무 관련 제품에 마킹 되어 있는 음각 문자들은 주변과의 명도 차이가 크지 않기에 문자나 숫자를 영상을 통하여 인식하기에 매우 어려움을 가지고 있다. 이에 본 논문에서는 타이어 표면과 같은 고무 제품에 음각으로 마킹 되어 있는 문자의 인식률을 향상시키기 위한 시스템을 제안한 것으로, 조명의 환경에 따라 유연하게 적용할 수 있다. 제안 시스템을 통하여 타이어 및 고무 제품들의 생산 공정에 적용하면 생산 및 재고 관리와 불량 검출을 신속하게 처리할 수 있어 생산 효율성이 향상될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.