• Title/Summary/Keyword: 버클링 해석

Search Result 7, Processing Time 0.022 seconds

Axial Height-Dependent Transverse buckling Model for 1-Dimensional Analysis of Load Follow Operation (일차원적 부하추종 운전해석을 위한 축방향높이 의존적 중성자속 버클링 모델)

  • Ho Ju Moon;Sung Ki Chae
    • Nuclear Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.105-115
    • /
    • 1985
  • The axial height-dependent transverse buckling is derived from 3-dimensional depletion file in steadystate conditions. For transient conditions a physical correlation is developed based on the linear relationship existing between the responses of in-core and ex-core detectors. The use of this model greatly improves the reliability of a 1-dimensional diffusion theory program in Predicting the axial power transients accompanying large variations of control rod positions.

  • PDF

Buckling Analysis of Roll Forming Process using Finite element method (유한요소법을 이용한 롤포밍 공정에서의 버클링 해석)

  • Kim, Young-In;Kim, Jong-Hun;Jeoung, Young-Chul;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1451-1456
    • /
    • 2003
  • In code roll forming processes, the sheet metal strip is gradually and successively bent into a desired profile. Occurrence of buckling is one of the major defects. Buckling may occur due to longitudinal stress and it is difficult to predict buckling behavior. In this study an analytical method for buckling behavior during roll forming is proposed. All numerical simulations are performed by finite element analysis. The behavior of buckling can be predicted with the simulation modeling of the finite element method.

Structural Analysis for a 70/15 ton×105 m Level Luffing Crane (70/15 ton×105 m 레벨러핑 크레인의 구조해석)

  • Kim, Min-Saeng;Shin, Yoo In;Song, Chul Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.983-990
    • /
    • 2013
  • Evaluation of the structural analysis for a 70/15 ton${\times}$105 m LLC (Level Luffing Crane) was conducted with an FEM Tool. Due to a discordance of the modeling and element type, the LLC was progressively analyzed after dividing it into the boom, main structure and rocker. All loads such as slewing, traveling and wind load, etc., that are indicated in the reference standards, were inputted as various severe conditions of the LLC. The deformation, equivalent stress(Von Mises stress), buckling characteristics were evaluated for the LLC structures. The stress concentrated areas over the allowable stress were identified, and reinforcement work was performed with a stiffener.

Analysis of Flow Characteristics and Optimum Design of a Buckling Microvalve Using the Finite Element Method (유한요소법을 이용한 버클링 마이크로 밸브의 유동특성 해석 및 최적 설계)

  • Kim, Jae-Min;Lee, Jong-Choon;Chung, Gwiy-Sang;Yoon, Suk-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.383-386
    • /
    • 2002
  • This paper reports on the fluid flow simulation results of an active microvalve. The mechanical and fluidic analysis are done by finite element method. The designed structure is normally closed microvalve using buckling effect, which is consist of three separate structures; a valve seat die, an actuator die and a small piezoelectric actuator. It is confirmed that the complete laminar flow and the lowest flow leakage are strongly depend on the valve seat geometry. In addition, turbulent flow was occurs in valve outlet according to increase seat dimension, height and inlet pressure. From this, we was deducts the optimum geometry of the valve seat and diaphragm deflection that have an great influence fluid flow in microvalve. Thus, it is expected that our simulation results would be apply for constructing integrated chemical analyzing system or drug delivery system.

  • PDF

The development of Bundle Type Ploymer Phase to Phase Spacer For 345kV Power Transmission Line (345kV 2도체용 폴리머 상간스페이서 개발)

  • Kim, Wan-Jong;Park, Bong-Guy;Park, Kwang-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.331-332
    • /
    • 2008
  • 최근 엘리노 현상과 기상이변(태풍 및 폭설)으로 갤로핑 및 전선도약(Sleet jump) 등에 따른 송전선로 상간단락 고장의 우려가 날로 증가하고 있다. 특히 345kV급 간선계통의 상간단락 고장은 순간전압 강화 등 전기품질 저하로 이어질 수 있다. 이에 본 논문에서는 345kV 2도체용 폴리머 상간스페이서를 개발하여 상간단락고장에 대한 근본적인 예방책을 제시하였다. 폴리머용 345kV 절연 설계, 고강도 FRP ROD 설계 및 턴버클을 이용한 미세조정 장치 적용, 코로나 방지를 위한 코로나 링 채용 등을 통하여 최적의 345kV 2도체용 상간스페이서를 고안하였다. 또한 상간스페이서 소재의 성능 평가 및 해석을 위하여 Maxwell 2D Field Simulator를 이용하여 모델링하였으며 갓 형상에 따른 전계분포 해석과 FRP와 고무 계면에서의 전계분포 해석도 수행하였다.

  • PDF

A Comparative Study on the 1-D and 3-D Load Follow Analysis Methods of Light Water Reactor (경수로의 부하추종 운전에 대한 1차원 및 3차원 해석방법의 비교 연구)

  • Kim, Chang-Hyo;Lee, Sang-Hoon;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.34-41
    • /
    • 1987
  • This work concerns with a comparison of the 1-dimensional (or 1-D) load follow analysis method with reference to the detailed 3-dimensional (or 3-D) computations. For this purpose a 1-D two-group finite difference code, HLOFO, and a 3-D coarse-mesh code based on the modified Borresen's method, CMSNAC, are developed. The CMSNAC code is used to obtain the 3-D power peaks and reactivity parameters in response to power swing from 100 to 50 and back to 100% in the 12-3-6-3 load cycle for the BOL of the KORI Unit 1 PWR core. The 3-D result is then compared with the 1-D HLOFO computations, the cross section and buckling inputs of which are obtained by combining the flux-volume weighting scheme with the approximate flux from the auxiliary 3-D computations. It is shown that the 1-D computation has a limited accuracy, yet it is confirmed that it can describe the core axial average behavior which is fairly consistent with the detailed 3-D computation.

  • PDF

Study of Failure Mode and Static Behavior of Lightweight FRP Truss Bridge Deck System (복합재료 트러스 교량시스템의 정적거동 및 파괴모드에 관한 해석적 연구)

  • Jung, Woo-Young;Lee, Hyung-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.511-520
    • /
    • 2007
  • There is a concern with worldwide deterioration of highway bridges, particularly reinforced concrete. The advantages of fibre reinforced plastic(FRP) composites over conventional materials motivate their use in highway bridges for replacement of structures. Recently, an FRP deck has been installed on a state highway, located in New York State, as an experimental project. In this paper, a systematic approach for analysis of this FRP deck bridge is presented. Multi-step linear numerical analyses have been performed using the finite element method to study the structural behavior and the possible failure mechanism of the FRP deck-superstructure system. Deck's self-weight and ply orientations at the interface between steel girders and FRP deck are considered in this study. From this research, the results of the numerical analyses were corroborated with field test results. Analytical results reveal several potential failure mechanism for the FRP deck and truss bridge system. The results presented in this study may be used to propose engineering design guideline for new and replacement FRP bridge deck structure.