• Title/Summary/Keyword: 밸브장치

Search Result 388, Processing Time 0.024 seconds

A Development of Solenoid Valve for Satellite Propulsion System (위성추진시스템 솔레노이드 밸브 개발)

  • Kim, Kyung-Sik;Baek, Ki-Bong;Park, Eun-Joo;Cho, Seung-Hwan;Kim, Su-Gyeom
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.456-459
    • /
    • 2011
  • The Dual-type Solenoid Valve was developed for a domestic production of a fuel-supply valve on the satellite attitude control thruster system. The satellite valve using a hydrazine as a fuel must fulfill the cycle life, shock, vibration and the environment of an extremely low temperature In addition to the basic performance of the response time, mass flow and leakage etc.. in this paper, the design, production and performance experiment using the nitrogen pneumatic equipment were conducted.

  • PDF

항공기용 유압 스푸울 밸브의 윤활해석

  • 박태조;김래성;김치붕
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.218-223
    • /
    • 1997
  • 유압장치의 핵심부품인 유압 제어밸브(hydraulic control valve)는 유압펌프 등에 의하여 가압된 유압유의 압력과 유량을 제어하고 유동방향을 변화시키는 주요기능을 수행한다. 특히, 대부분의 제어밸브는 스푸울(spool)과 슬리브(sleeve)를 기본구조로 채용하고 있다. 피스톤 형상인 스푸울이 슬리브내를 왕복운동하면 스푸울과 슬리브 사이의 간극(clearance)에서는 점성유체인 유압유의 윤활작용에 의하여 원주방향으로 비대칭인 유체압력이 발생한다. 이 결과로 스푸울에 측력(lateral force)이 작용하며, 조건에 따라서는 스푸울에 작용하며, 조건에 따라서는 스푸울에 작용하는 마찰력이 증대할 뿐만 아니라 스푸울과 슬리브의 내벽에 과도한 마멸(wear)을 유방시키기도 하여 제어밸브의 성능을 크게 저하시키기도 한다. 유압공학분야서는 이를 유체고착(hydraulic locking) 현상이라고 부른다. 본 논문에서는 항공기 Flap actuator의 Selector manifold에서 사용되는 스푸울 밸브의 성능에 큰 영향을 미칠 것으로 예상되는 스프울과 슬리브 사이 간극에서의 윤활특성을 이론적으로 조사하고자 한다.

  • PDF

An Experimental Study on Measurement of Flow Coefficient Using the Steady-Flow Test Rig (정상유동장치를 이용한 유량계수 측정에 관한 실험적 연구)

  • Park, Sang-Wook;Choi, Ik-Soo;Noh, Ki-Chol;Ryu, Soon-Pil;Yoon, Keon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.423-429
    • /
    • 2012
  • Miller cycle is considered as an effective means to meet the regulation on Tier II and to reduce $CO_2$ emission. For this cycle, the amount of intake air supplied should be enough increased. Therefore, the intake system with minimized resistance for air flow is under consideration. In this study, the flow coefficients of intake valves were measured in order to obtain the basic data for the cycle simulation and intake port design. The flow coefficients were measured using the steady-flow test rig. As a test result for the poppet valve used the marine engine with medium speed, the flow coefficients are increased to about 0.62 with the valve lift. In addition it is confirmed that the flow coefficients have the characteristic value irrelevant to the S/B ratio.

Flow Characteristics in the Downstream Region of a Butterfly Valve with Various Disk Opening Angle (디스크 회전각에 따른 버터플라이 밸브 하류에서의 유동특성)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.267-272
    • /
    • 2006
  • Butterfly valves have been used for shut-off and throttling-control application in many industrial fields. Recently, they are frequently used for cooling water, oil system and ballast piping system of many larger vessels. They are especially suited for flow throttling control of heat exchangers in engine room. Measurement by the PIV(Particle Image Velocimetry) was conducted to investigate the flow characteristics of butterfly valve inserted within circular pipe. Flow behaviors such as instantaneous and time-mean velocity vectors are investigated. Furthermore, to reveal systematic performance of the butterfly valve, wall pressure was measured at 6 points along the pipe by digital manometer. As the valve position moves to the closed side, flow separation increases and persists its tendency downstream until smoothly uniform flow developed. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 60 degrees.

  • PDF

The Investigation of Magnetic Material Characteristic for Solenoid Valve Development (솔레노이드 밸브 개발을 위한 자성소재 특성 조사)

  • Kim, Byung-Hun;Yi, Moo-Keun;Kwon, Oh-Sung;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.817-820
    • /
    • 2011
  • The solenoid valve is an electro-mechanical device that converts electrical energy into mechanical motion. The magnetic field of solenoid is very closely related to the number of coil winding, the intensity of current and the characteristic of magnetic material. There are disadvantages that the weight and size of valve increase, as increasing the number of coil winding, the intensity of current to augment the magnetic force. Therefore, the selection of magnetic material is very important to reduce the weight and size of solenoid valve.

  • PDF

Design Optimization of Linear Actuator for Fast Response of Electromagnetic Engine Valve (과도시간 감소를 위한 전자기 엔진밸브 액츄에이터 형상 최적 설계)

  • Kim, Jin-Ho;Park, Sang-Shin
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.1
    • /
    • pp.24-27
    • /
    • 2010
  • This paper presents the design optimization of a linear actuator for fast response of electromagnetic engine valve. The optimization is performed using generic algorithm which is one of global search techniques and not highly dependent on either initial conditions or constraints in the solution domain to maximize the mechanical frequency of the armature mass and valve spring stiffness for fast response of the engine valve. In the results, the mechanical frequency is improved by 30 %.

Development of BLDC Motor Valve Actuator Controller for Rapid Maneuvering Thruster (BLDC 모터를 이용한 고기동 추력기용 밸브 구동장치 제어기 개발)

  • Lee, Jung-Un;Jang, Hee-Jin;Park, Chi-Hyoung;Park, Sang-Joon;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.929-932
    • /
    • 2011
  • We developed a valve actuator controller for thruster system. This thruster system has four actuators and the actuator use a BLDC motor. Controller was made based on system and control requirement. The controller is consist of power, control and Amp. The control module use a micro-controller which is TMS320F28335 of Texas Instruments. It works for digital PID control and CAN communication and system control. The amp module for three phase BLDC motor use IGBT.

  • PDF

Design of POGO Supporession Device Performance Test System (POGO 억제장치 성능 시험기 설계)

  • Lee, Han-Ju;Kim, Ji-Hun;Jeong, Dong-Ho;O, Seung-Hyeop
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.181-187
    • /
    • 2006
  • The present study deals with the experimental facility for PSD (POGO Suppression Device) performance test systems. Basically there are two methods to pulsate the system; whole-feeding-system pulsation and working-fluid pulsation. The latter method adopts either a piston-type pulsator or a restrict-type pulsator. The working-fluid pulsation using a restrict-type pulsator was considered to be the most appropriate experimental system to study the effects of the primary parameters, and a practical design of the system was proposed. Also, the experimental facility adopts the ball valve type pulsator considering the leak problem of the plate type pulsator.

  • PDF

Development of the Ultra Sonic Deburring Machine through Dissolved Gas Control (용존가스 제어를 통한 정밀 초음파 디버링 머신 개발)

  • Seo, Ji-Yun;Jung, Sung-Hak;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.876-878
    • /
    • 2016
  • 본 연구에서는 자동차 및 기계부품의 제조공정에서 핵심부품인 밸브바디의 주물공정 후 생성된 버(burr)를 제거하기위한 초음파 디버링 장치를 개발하고자하였다. 초음파 디버링장치는 진동부와 제어부로 구성되고 디버링효과의 극대화를 위해 디버링 수에 포함된 용존가스의 제거가 매우 중요함에 따라 용존가스 제어기법을 적용한 초음파 디버링 장치를 개발하고 평가실험을 수행하였다. 본 연구에서는 초음파 디버링에서의 용존가스에 따른 디버링 성능을 평가하고 실제 시스템에 적용하기위한 산업적용 가능성 평가를 수행하였다.

  • PDF

A Fault Detection Method for Solenoid Valves in Urban Railway Braking Systems Using Temperature-Effect-Compensated Electric Signals (도시철도차량 제동장치의 솔레노이드 밸브에 대한 전류기반 고장진단기법 개발)

  • Seo, Boseong;Lee, Guesuk;Jo, Soo-Ho;Oh, Hyunseok;Youn, Byeng D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.835-842
    • /
    • 2016
  • In Korea, urban railway cars are typically maintained using the strategy of predictive maintenance. In an effort to overcome the limitations of the existing strategy, there is increased interest in adopting the condition-based maintenance strategy. In this study, a novel method is proposed to detect faults in the solenoid valves of the braking system in urban railway vehicles. We determined the key component (i.e., solenoid valve) that leads to braking system faults through the analysis of failure modes, effects, and criticality. Then, an equivalent circuit model was developed with the compensation of the temperature effect on solenoid coils. Finally, we presented how to detect faults with the equivalent circuit model and current signal measurements. To demonstrate the performance of the proposed method, we conducted a case study using real solenoid valves taken from urban railway vehicles. In summary, it was shown that the proposed method can be effective to detect faults in solenoid valves. We anticipate the outcome from this study can help secure the safety and reliability of urban railway vehicles.