• Title/Summary/Keyword: 밸브위치

Search Result 162, Processing Time 0.029 seconds

Comparison of cardiopulmonary resuscitation quality using the over-the-head and lateral conventional positions with a bag-valve-mask device performed by a single rescuer : A manikin study (백밸브마스크를 이용한 1인 심폐소생술에서 구조자 위치 변화에 따른 가슴압박과 인공호흡의 질 변화 연구)

  • Uhm, Tai-Hwan;Jung, Hyung-Keon
    • The Korean Journal of Emergency Medical Services
    • /
    • v.20 no.1
    • /
    • pp.7-15
    • /
    • 2016
  • Purpose: There are few studies on the quality of cardiopulmonary resuscitation (CPR) performed by a single rescuer using a bag-valve-mask device. The aim of this study is to compare CPR quality outcomes according to the rescuer's position or mask fixation grip method and to determine the optimal means of achieving therapeutic goals. Methods: The three CPR methods were defined as over-the-head, lateral-superior, and lateral-inferior, depending on the rescuer's position or mask fixation hand placement. CPR quality was estimated for 83 paramedic students who performed 5 minutes of CPR in a randomized sequence on a manikin using each of the three methods. Results: The over-the-head method showed no advantage for cardiac compression and ventilation quality, but minimized the rescuer's fatigue score. Conclusion: In contrast to previous studies or prevailing beliefs, the lateral-superior position is optimal for achieving therapeutic goals with moderate or minimal rescuer fatigue.

Development of Personal Compact Oxygen Generator using Vacuum Swing Absorption (개인용 VSA방식 소형 산소발생기 개발)

  • Jang, Jun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2479-2483
    • /
    • 2012
  • This paper discusses the development of a personal compact oxygen generator for portable and mobility. The compact oxygen generator is operated with vacuum swing absorption by compact vacuum pump. The components of oxygen generator is composed on the miniaturization and weight reduction, and it is optimized by discharge pump speed, nozzle diameter and 3-way valve interval. In 0.5mm of nozzle diameter, $O_2$ concentration is approximately 37%, and flow rate is $1{\ell}$/min. On the 30cm away from the nozzle, $O_2$ concentration is increased approximately 0.5%.

Basic Design of High Pressure LOx Lines for a Liquid Rocket Engine (액체로켓엔진 액체산소 고압 배관부 기본설계)

  • Moon, Il-Yoon;Yoo, Jae-Han;Moon, In-Sang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.107-110
    • /
    • 2009
  • A basic design for a Technical Development Model (TDM) of liquid oxygen lines from the turbopump exit to the oxidizer valves of the combustion chamber and the gas generator was conducted to develop a turbopump-fed liquid rocket engine. The TDM is composed of straight lines, elbows, bellows, a branch, an orifice, flanges and a heat insulator. Materials were determined by consideration of operation conditions, weight constraint and manufacturing procedures. The size and the location of each component were determined by flow analysis of the required flowrate and the pressure loss. Basic designs of the components were conducted by consideration of the operating temperature and the maximum expectation operating pressure. The safety factors were evaluated by structural analysis of design of each component.

  • PDF

Improvement Method for Human Body Sensing Module and Managing System (인체 감지 센서 모듈 및 관리 시스템의 개선 방안)

  • Ahn, Tae-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.223-227
    • /
    • 2014
  • This paper presents an improvement method for human body sensing module and management system, specifically focused on the human body detection module with ultrasonic sensors to detect the usage of toilets and the management system to control the state of the toilets of the entire building. The proposed human body sensing module consists of the detection sensor to detect the movement of human body and the contact sensor to detect the position in a certain distance. The management system is configured of the control unit to process the signal transmitted from sensors, opening and closing valves according to the sensing signal, and the short range wireless communication unit to save the operational status data as well as transmit the data at regular intervals.

Design of Robust Fuzzy Controller for Load-Frequency Control of Power Systems Using Intelligent Digital Redesign Technique (지능형 디지털 재설계 기법을 이용한 전력 계통의 부하 주파수 제어를 위한 강인한 퍼지 제어기 설계)

  • Joo, Young-Hoon;Jeo, Sang-Won;Kwon, Oh-Sin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.357-367
    • /
    • 2000
  • A new robust load-frequency control methodology is proposed for nonlinear power systems with valve position limits of the governor in the presence of parametric uncertaines. The TSK fuzzy model is adopted and formulated for fuzzy modeling of the nonlinear power system. A sufficient condition of the robust stabilitry is presented in the sense of lyapunov for the TSK model with parametric uncertainties. The intekkigent digital redesign technique for the uncertain power systems is also studied. The effectiveness of the robust digital fuzzy controller disign mothod is demonstrated through a numerical simulation.

  • PDF

A Simulation Study of Position Control Performance of a Shape Memory Alloy-Actuated Flow Control Valve (형상기업합금을 이용한 유량제어밸브의 위치제어 적용 시뮬레이션)

  • Choi, Su-Hyun;Lee, Han-Suk;Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.79-87
    • /
    • 1999
  • In this study, a new type of flow control valve which is SMA actuated flow control valve is presented. The flow control valve is actuated by a small motion of shape memory alloy. The performance of this valve as a position control component is analyzed by computer simulation. A variable structure control technique is applied for the position control by the flow control valve. The position control performance of the valve is evaluated on the step responses of a PID control by a electrohydraulic servo valve. For the simulation study, first, the mathematical model of a hydraulic system, which is consisted of the flow control valve and a hydraulic cylinder, is formulated. This mathematical model and the designed variable structure control algorithm are then combined by the MATLAB software. The same sequence of work is carried out for the PID position control system with a electrohydraulic servo valve. The simulation results show the validity of the new type of flow control valve as a variable position control component.

  • PDF

하나로 냉중성자원 진공계통의 운전 특성

  • Son, U-Jeong;Lee, Mun;Kim, Min-Su;Choe, Ho-Yeong;Han, Jae-Sam;Jo, Seong-Hwan;Heo, Sun-Ok;An, Guk-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.366-366
    • /
    • 2011
  • 냉중성자원은 하나로 반사체탱크에 위치한 수직공에 설치되어 노심에서 발생하는 열중성자를 감속재인 액체수소층을 통과시켜 냉중성자를 생산하는 설비로 수소가를 충전하고 있는 수소계통이 있으며, 21K의 극저온 액체수소/기체수소 2상(ttwo-phase)을 유지하기 위해 외부에서 유입되는 열침입을 최소화하기 위해 진공계통이 설치되어 있다. 진공계통은 수조내기기 집합체(In-Pool Assembly : IPA)의 액체수소 열사이펀, 감속재 용기 등의 냉중성자원 극저온 부풀들의 단열을 위하여 진공용기 내부진공도를 공정진공도 이하로 유지하기 위한 계통으로 고진공펌프, 진공배기탱크 및 저진공펌프의 조합으로 두 개의 진공펌프시스템과 진공박스, 배기수집탱크 및 밸브박스를 포함한 연결배관으로 설계되었다. 저진공펌프를 이용하여 대기압에서 고진공펌프 작동압력까지 도달한 후 고진공펌프를 가동하여 공정진공도 이하의 진공도를 확보하고, 고진공펌프로부터 배기되는 배출가스는 고진공펌프 후단에 설치된 진공배기탱크에 포집되며, 필요 시 저진공펌프레 의하여 배기수집탱크로 배출된다. 진공펌프시스템은 진공용기 내부의 압력이 공정진동고 이하로 유지되도록 연속적으로 가동되어 진공단열이 가능하다. 본 논문은 감속재인 수소를 액화상태로 유지하며, 공정진공도 이하로 충분히 유지되어 운전되는 진공계통의 특성을 원자로 운전 주기별로 소개하고자 한다.

  • PDF

Effect of air inflow on the performance of a 50kW-class cross-flow turbine (50kW급 횡류수차 내 공기 유입이 성능에 미치는 영향)

  • Kim, Jun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.418-423
    • /
    • 2014
  • Small hydropower has been considered as a solution to resolve the problem of exhaustion of fossil fuel and industrial pollution. In this study, we developed and tested a Cross-Flow Turbine with two guide vanes to optimize the small hydropower for the site condition with large fluctuation of head and flow rate. Furthermore, in the condition of constant inlet head, CFD analysis was carried out to analyze the effect of air suction and valve position on the performance characteristics. The results showed that the air suction can minimize the hydraulic loss caused by the Recirculation flow in the runner passage and flow impact on main shaft so that it can increase the turbine efficiency and output power.

Displacement Control of Pneumatic Actuator Equipped with PLC and Proximity Sensors (PLC와 근접센서를 이용한 공압 실린더의 변위제어)

  • Kim, Gun-Hoi;So, Jung-Duck
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.90-96
    • /
    • 2008
  • A pneumatic system was proposed to evaluate displacement accuracy of the pneumatic actuator without external load and to analyze capability of integration of the proposed valve system. The proposed pneumatic system consisted of a combination of pneumatic valves, two proximity sensors, and a programmable logic controller(PLC). The position controller is based on the PLC controller connected with the proximity sensors. Displacement accuracy of the pneumatic cylinder stroke was tested by varying air pressures of the supply and discharge-side and strokes of the pneumatic cylinder. The displacement accuracy of the pneumatic cylinder stroke increased as the supply and discharge side of air pressure increased at the stroke length of 133mm. Also the displacement accuracy increased as the stroke length increased with a fixed supply and discharge side of air pressure of the pneumatic cylinder as 3.5 and $4.5kg/cm^2$, respectively. The most accurate displacement of the pneumatic cylinder(i.e., standard deviation of 0.01 mm) was obtained at the supply and discharge side of air pressure of 4.0 and $5.0kg/cm^2$, respectively, and strokes of 170 and 190 mm among arbitrarily selected supply and discharge side air pressures and strokes.

Advanced Railway Vehicle Technology using Smart Materials (지능재료를 이용한 차세대 철도차량기술)

  • 김재환;강부병;김형진;정홍채;최성규
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.712-717
    • /
    • 2003
  • 지능 재료를 이용한 디바이스는 자연계에 존재하는 생명체와 같이 내.외부 환경 변화에 대응하여 스스로 변하는 능동적 기능을 갖고 있기 때문에 시스템 성능의 극대화 및 유지비용의 최소화를 가져오게 된다. 이러한 지능재료 기술은 지난 10여년 전부터 연구되었는데 대표적인 웅용을 보면, 산업, 항공, 교통, 운송 분야의 능동 소음 및 반능동 진동제어; 복합 재료 손상위치 탐지시스템, 손상구조 건전성 평가시스템, 교량, 저장탱크, 건물, 유조선, 대형 구조물의 건전성 평가 시스템; 초정밀 직진 안내기구, 나노 스테이지, 절삭오차 보정용 엑츄에이터, 초음파 회전모터, 지능유압 서보밸브, 변형 거울 등의 모터/엑츄에이터; 자동차 엔진 성능제어, 흡배기구 압력측정, 가속도 센서, 자이로센서, 에어백 센서, 타이어 센서 등의 지능 MEMS/NEMS 센서; electronic article 정찰, 도서태그, 비접촉 항공 운송물 분류 및 보안시스템, 전자 운전자 식별시스템, 광섬유 건물 보안 시스템, 지능 신경망 형상 인식 시스템 등의 보안 시스템; 지능항공기 구조물, 인공위성안테나, 헬리콥터 회전익 등의 형상제어가 있다. 본 논문에서는 지능재료 기술을 정리하고 차세대 철도차량 기술에 지금까지 적용한 예를 소개하며 향후 적용할 수 있는 분야들을 가능성 및 실용성 면에서 소개하고자 한다.

  • PDF