• Title/Summary/Keyword: 밸브설계시스템

Search Result 261, Processing Time 0.022 seconds

Analysis of Dynamic Characteristics and Performance of Solenoid Valve for Pressurization Propellant Tank (추진제탱크 가압용 솔레노이드밸브의 작동특성 분석 및 해석)

  • Jang, Jesun;Kim, Byunghun;Han, Sangyeop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2013
  • A 2-way solenoid valve regulates to maintain the pressure of ullage volume of propellant tanks when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of solenoid valve for pressurization is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To improve the accuracy of the model, numerical flow analysis by using FLUNET code. The simulation results of their operating durations of valve by AMESim analysis are matched up with the results of experiments and validate valve model. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors of basic valve and control valve; geometrical size of valve seat, ratio of basic valve and sealing area.

Study on Flow Characteristics and Discharge Coefficient of Safety Valve for LNG/LNG-FPSO Ships (LNG / LNG-FPSO 선박용 안전밸브의 유동특성 및 유출계수에 관한 연구)

  • Kim, Sung-Jin;Jung, Sung-Yuen;Kim, Dang-Ju;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.487-494
    • /
    • 2011
  • The safety valve used in LNG/LNG-FPSO ships plays an important role in maintaining a fixed level of pressure by emitting LNG gas out of the pipes in the LNG piping system. The discharge coefficient is regarded as the most important factor in the valve performance. To satisfy the ship's classification, the discharge coefficient of the safety valve must usually be over 0.8. Despite the importance of understanding the flow phenomena inside the safety valve, the valve design is usually based on experience and experiments. We carried out a computational fluid dynamics (CFD) investigation using the ANSYS-CFX software. We observed the flow phenomena inside the valve and measured the discharge coefficients according to changes in the valve lift, which is the distance between the exit of the nozzle and the lower part of the disc plate. We verified our CFD results for the discharge coefficients using available experimental data.

Optimal Design of the Safety Valve by Response Surface Method (반응표면법을 이용한 안전밸브의 최적화)

  • Lee, Sang-Woo;Shin, Dae-Young;Byun, Cheol-Woong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.551-556
    • /
    • 2007
  • High pressure storage of the agent gas in fire suppression system was composed of tank, main valve and safety valve, which prevents the fracture of the high pressure storage. The safety valve has circular thin plate as fracture plate that was destroyed over fracture pressure. When inner pressure of the storage is reached the fracture pressure, the safety valve discharges gas and degrades simultaneously the inner pressure of the storage. There are design variables such as flow path diameter, inner diameter of the plastic packing ring, thickness of plate and fillet radius. In this variables, thickness of plate is set to be a value of 0.2mm. The main effect of variables on the inner pressure, has been decided using factorial design and statistical analysis. Therefore, the relation of variables are expressed by regression equation. It is disclosed results that the difference of fracture pressures between the equation and experiment has $2{\sim}5%$. Finally, using response surface method, the optimal design of the safety valve could be decided with safety pressure of 25MPa, where the fracture occurs on circular thin plate.

추력제어밸브 성능시험설비 설계

  • 이중엽;정태규;하성업;홍문근;이희준;한상엽;김영목
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.83-83
    • /
    • 2004
  • 상용프로그램인 AMESim을 이용하여 제어밸브 성능시험설비에 대한 Transient 구간에서 문제점 발생 확인과 동시에 시스템에 최적화를 통한 비용 절감효과를 위해 본 Simulation을 수행하였다. 가압 자동 조절 시스템은 직렬식과 병렬식 두 가지에 대해 고려했을 경우 직렬식이 더 타당함을 확인하였고, 특히 Tank Ullage의 압력 분포를 보면 직렬식에서 Fluctuation이 약 $\pm$0.2%이고, 병렬식에서 약 $\pm$0.7%가 됨을 보았다. (중략)

  • PDF

Studies on the Performance of a Cam Driving Electronic Expansion Valve for Vehicles (캠구동 방식을 적용한 자동차 공조시스템용 전자팽창밸브의 성능에 관한 연구)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.732-736
    • /
    • 2016
  • Air conditioning part designs are moving towards higher efficiency and productivity. The expansion device is one of the core parts of an air conditioning system and controls the refrigerant quantity, evaporation load, compression capacity, and condensation capacity. In this study, an electronic expansion valve for two working fluids ($CO_2$ and R134a) was developed for air conditioning systems in vehicles. The valve uses an eccentric cam driving structure instead of a lead screw to decrease manufacturing costs and increase productivity. The pressure resistance and flow rate performance was evaluated using numerical analysis. At maximum operation conditions and burst pressure conditions with $CO_2$, the maximum stresses on the valve model were about 98 MPa and 223 MPa, respectively. The maximum flow rates of $CO_2$ and R134a with different orifice openings were about 550 kg/h and 386 kg/h, respectively. The performance with R134a was verified by experiments.

Design and Implementation of Embedded System Board Electric Appliances using PIC16F84 (PIC16F84를 이용한 전기기기 제어용 임베디드시스템의 설계 및 제작)

  • 홍종표;황인섭;공휘식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.448-451
    • /
    • 2001
  • 일반적으로 전기기기는 사람의 스위칭조작으로 작동이 되고 있다. 이를 개선하기 위하여 본 연구는 전기기기의 자동 스위칭과 홈네트워킹을 위한 제어용 임베디드 시스템을 설계하고, 제작하였다. 설계 제작한 제어 시스템은 PIC16F84에서 접근 센서의 입력 신호를 이용하여 전원 단속, 기기의 on/off를 수행하였으며, 내부의 상태를 감지하여 기기의 상태 표시용LED구동, 솔레노이드 밸브의 open/close 기능을 부여하였다. 본 임베디드 시스템은 통신 모듈을 구성하여 PIC의 기능을 강화하면 홈네트워킹용 시스템으로 발전할 수 있다.

  • PDF

Finite Element Analysis and Design Verification Test of Circular Plate Spring in Thruster Valve of Satellite Propulsion System (위성 추진시스템 추력기 밸브 내 원형 판스프링 유한요소해석 및 설계 검증시험)

  • Ko, Sujeong;Son, Miso;Kim, Namhui;Kim, Jonghak;Yoon, Hosung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.838-842
    • /
    • 2017
  • The thruster valve, which is one of the key components applied to the mono-propellant system for the satellite, has a circular plate spring structure. It can be designed as a structure that does not have positional deformation and particles by friction and repetitive motion. In this study, finite element analysis and verification were performed by setting the width of the circular plate spring as a design parameter with the material, thickness and radius of the circular plate spring as fixed variables. The linearity of the spring constant is shown by the graph that is spring force with displacement. It is confirmed that the optimization design of the circular plate spring is possible by the spring force tendency according to the total area of circular plate spring.

  • PDF

Study on the improvement in Cv of a Main Oxidizer shut-off Valve (CC 산화제 개폐밸브 유량계수 향상에 관한 연구)

  • Hong, Moon-Geun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.140-148
    • /
    • 2009
  • MOV(Main Oxidizer shut-off Valves) control the combustion of launch vehicle systems by the supply and the isolation of liquid oxygen to a main combustion chamber in launch vehicle systems. Moreover, in the steady operational state, the MOV should secure a constant flow rate of liquid oxygen for combustion instability in the combustion chamber. Concerning the development of MOV, TM(Technology Model) has been manufactured and normal operations of the valve have been verified. However, the Cv of TM has been proved to be too low as compared with a design specification value. Therefore, CFD analysis have been performed by modification of the configurations of TM in order to increase sufficiently Cv of EM(Engineering Model), which is the following model of TM. The modifications of TM configurations such as partial scale-up of valve, increase of stroke length, and outlet angle of 120o would result in a considerable augmentation of Cv. It has been verified by flow capacity tests that the improved Cv of EM is min. 212, which is higher than Cv of TM, 161 by about 32%.

  • PDF

A Numerical Study of New Vehicle Hydraulic Lift Activation by a Magneto-rheological Valve System for Precise Position Control (정밀 위치 제어를 위해 MR 밸브 시스템을 활용한 차량 유압 리프트에 대한 수치해석적 고찰)

  • Lee, TaeHoon;Park, Jhin-Ha;Choi, Seung-Bok;Shin, Cheol-Soo;Choi, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.28-35
    • /
    • 2017
  • Recently, conventional hydraulic car lift systems face the technological limitations due to a lack of height control. The demand for height controllability is required in many tasks such as wheel alignment, and requires compensation for the structural deformation of the lift caused by irregular load distribution. In order to resolve this limitation of the conventional car lift, in this work, a new type of a hydraulic vehicle lift using a magneto-rheological (MR) valve system is proposed and analyzed. Firstly, the dynamic model of vehicle lift is formulated to evaluate control performance; subsequently, an MR valve is designed to obtain the desired pressure drop required in the car lift. Next, a proportional-integral-derivative (PID) controller is formulated to achieve accurate control of the lifting height and then computer simulations are undertaken to show accurate height control performances of the proposed new car lift system.

Design of thermal system using 3-way valve and PTC to which a solar module (태양광 모듈이 부착된 PTC 집열기 및 3웨이 밸브를 이용한 온열 시스템 설계)

  • Song, Je-Ho;Lee, In-Sang;Lee, You-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.454-459
    • /
    • 2017
  • In this study, a thermal system was designed using a 3-way valve and PTC attached to a solar module. This design could help solve the problem of rising fossil fuel costs caused by limited reserves and environmental problems resulting from fossil fuel use. The thermal system is a hot-air and heating control system composed of a temperature sensor part, mode setting part (for hot air and heating modes), supply part, and thermal system control part. The temperature sensor part has piping and an indoor temperature display, and the temperature setting part has multiple monitoring functions. The mode setting part switches between hot air and heating modes and can be used to set the temperature. The thermal system control part performs functions such as PTC control and temperature setting, PTC day and night and time selection, hot air and heating control, and three-way valve selection. The results verify that the system operates with stable response speeds of $680{\mu}s$ in the temperature sensor part, $700{\mu}s$ in the mode setting part, and $610{\mu}s$ in the thermal system control part.