• Title/Summary/Keyword: 밸브설계시스템

Search Result 261, Processing Time 0.032 seconds

A study on the pressure controller design of multiple control valve structure (다중 제어밸브 구조의 압력제어기 설계에 관한 연구)

  • Shin, Suk-Shin;Park, Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.404-408
    • /
    • 2013
  • In this Study, another way to accomplish the goal of meeting large steam-flow requirements is the use of multiple valves. Multiple valves can provide better control in meeting the precision pressure controller requirements. Simulation demonstrates the effectiveness of the pressure controller. The key point of this study is to precisely control the position of the control valve on the outside of the electro-hydraulic system using a special PID controller. Simulation and experiments verify the performance of the controller.

Inducement of Design Parameters for Reliability Improvement of Servo Actuator for Hydraulic Valve Operation (유압밸브 구동용 서보 액추에이터의 신뢰성 향상을 위한 설계 파라미터 도출)

  • Sung, Baek Ju;Kim, Do Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.475-482
    • /
    • 2014
  • The precision hydraulic valve is widely used in various industrial field like aircraft, automobile, and general machinery. Servo actuator is the most important device for driving the precise hydraulic valve. The reliable operation of servo actuator effects on the overall hydraulic system. The performance of servo actuator relies on frequency response and step response according to arbitrary input signal. In this paper, we performed the analysis for the components of servo actuator to satisfy the reliable operation and response characteristics through the reliability analysis, and also induced the design parameters to realize the reliable operation and fast response characteristics of servo actuator for hydraulic valve operation through the empirical knowledge of experts and electromagnetic theories. We suggested the design equations to determine the values of design parameters of servo actuator as like bobbin size, length of yoke and plunger and turn number of coil, and verified the achieved design values through FEM analysis and performance tests using some prototypes of servo actuators adapted in hydraulic valve.

Analysis of operating characteristics and design review of oxidizer fill-drain valve (산화제 충전/배출 밸브의 설계 검토 및 작동 특성 분석)

  • Jang, Je-Sun;Kwon, Oh-Sung;Lee, Kyung-Won;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.79-88
    • /
    • 2011
  • A fill-drain valve is operated by provided control gas at the ground for liquid propellant feeding system of space launch vehicle, which fills or drains on-board propellant tanks with a cryogenic oxidizer. We have analyzed and modified the data of fill-drain valve designed by Yuzhnoye. The simulation model of fill-drain valve is designed by using the AMESim code to predict and evaluate the dynamic characteristics and pneumatic behavior of valve. In this study, we performed a dynamic characteristic simulation on design parameter. And we could predict opening/closing time and pressures, operating performances on design parameters. This study will serve as one of reference guides to enhance the developmental efficiency of fill-drain valves with the various operating requirements, which shall be used in the Koreanized Space Launch Vehicle.

Design and Test Evaluation of a High Temperature and Pressure Valve for Fuel Supply of High-Speed Vehicles (고속비행체 연료공급용 고온고압 밸브 설계 및 시험평가)

  • Kim, Minsang;Hyun, Seokho;Jun, Pilsun;Park, Jeongbae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.945-948
    • /
    • 2017
  • A valve used in a high temperature and pressure condition for high-speed vehicle application was developed for fuel supply and cooling system. For weight reduction purpose, the size outline of valve was optimized based on its performance and operating environment. And the rigidity design was adopted by minimizing uses of sealing parts to prevent leakages. Also, A fluid analysis was performed to derive the optimized internal flow path design in consideration of minimized pressure drop. Finally, the valve performance was verified by installing the valve into the test equipment which enable to simulate endothermic fuel of high temperature in high-speed vehicle.

  • PDF

A new approach to design isolation valve system to prevent unexpected water quality failures (수질사고 예방형 상수도 관망 밸브 시스템 설계)

  • Park, Kyeongjin;Shin, Geumchae;Lee, Seungyub
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1211-1222
    • /
    • 2022
  • Abnormal condition inevitably occurs during operation of water distribution system (WDS) and requires the isolation of certain areas using isolation valves. In general, the determination of the optimal location of isolation valves considered minimization of hydraulic failures as isolation of certain areas causes a change in hydraulic states (e.g., flow direction, velocity, pressure, etc.). Water quality failure can also be induced by changes in hydraulics, which have not been considered for isolation valve system design. Therefore, this study proposes a new isolation valve system design methodology to prevent unexpected water quality failure events. The new methodology considers flow direction change ratio (FDCR), which accounts for flow direction changes after isolation of the area, as a constraint while reliability is used as the objective function. The optimal design model has been applied to a synthetic grid network and the results are compared with the traditional design approach. Results show that considering FDCR can eliminate flow direction changes while average pressure and coefficient of variation of pressure, velocity, and hydraulic geodesic index (HGI) outperform compared to the traditional design approach. The proposed methodology is expected to be a useful approach to minimizing unexpected consequences by traditional design approaches.

Conceptual Design of the Fuel Injection Valve Tester for ME-LGI Marine Engine by Using System Engineering (ME-LGI 선박엔진용 연료분사밸브 테스터 개발을 위한 시스템 엔지니어링 기반 개념 설계)

  • Noh, Hyonjeong;Kang, Kwangu;Bae, Jaeil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.681-688
    • /
    • 2018
  • As environmental regulations have been strengthened and high fuel efficiency has been in demand in recent years, the number of ships using natural gas as a fuel is increasing. The demand for ships using LPG or methanol, which are emerging as eco-friendly vessel fuels, is also increasing. In this perspective, ME-LGI engines using LPG or methanol as a fuel have attracted considerable attention. Ships equipped with an ME-LGI engine are required to check the reliability of the fuel injection valve during shipping. This means that the development of a fuel injection valve tester is essential for the commercialization of ME-LGI engine. This study conducted the conceptual design of a fuel injection valve tester for ME-LGI engines using a system engineering process in the order of requirements analysis, functional analysis, and design synthesis. In the requirement analysis stage, the operating process of fuel injection valve was analyzed, and the necessity of checking the sealing oil leakage was then derived. In the functional analysis stage, the functions and flow of them were defined at each functional level. In the design synthesis stage, the equipment for each function was set and the process block diagram based on it was derived. In addition, preliminary risk analysis was performed as a part of system analysis and control, and safety measures were added to the conceptual design. This study is expected to be a good reference material for the concept design of other systems in the future because it shows the application process of a system engineering process to the conceptual design in detail.

Analysis of Dynamic Characteristics and Performances of Vent-Relief Valve (산화제 벤트/릴리프밸브의 동특성 해석 및 작동성능분석)

  • Jang, Je-Sun;Koh, Hyeon-Seok;Han, Sang-Yeop;Lee, Kyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.741-747
    • /
    • 2010
  • Vent-relief valve performed as a safety-valve combination for liquid propellant feeding system of space launch vehicle, which can vent the vaporized oxygen vapor during both filling cryogenic oxidizer into tank and flight. We have designed vent-relief model by using the AMESim code to predict dynamic characteristics and simulate pneumatic behavior of valve. To validate valve model we have compared by opening time in vent model, and opening/closing pressure by mathematical methods and improved the accuracy through numerical flow analysis by using FLUENT code. In this study, we had verified design parameters and analyzed operating performances. We can use these analysis results to precedent development study on propellant feeding system of Korea Space Launch Vehicle.

  • PDF

Design and Computational Fluid Dynamics of Pressure Reducing Valve (감압밸브의 설계 및 유동해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2853-2857
    • /
    • 2012
  • In this paper, 3-dimensional designing program, Solidwork was used in designing in order to investigate structure and characteristics of a pressure reducing valve which was used as an apparatus for keeping regulated pressure of water supply equipment system and also 2-dimensional drawing was made to manufacture a pressure reducing valve in the field.

The Design and Implementation of the Motorized Valve Control System using CANopen Protocol (CANopen 프로토콜을 이용한 전동밸브 제어시스템 설계 및 구현)

  • Lee, Myung-Eui;Shin, Keun-Soo;Yang, Sung-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.321-327
    • /
    • 2010
  • This paper deals with the design and development of the motorized valve control system using CANopen protocol. The CAN network protocol is used in the physical layer(layer 1) and data link layer(layer 2), and other upper network layer above that layer 1 and 2 utilize the CANopen protocol in this paper. The motorized valve controller is implemented by a PIC microprocessor, and the server application software for the control system user is written in C# language. In particular the CANopen protocol is widely used int the area such as ship automation systems and marine transportation systems. The experimental result of the proposed control system implemented in this paper is evaluated via real-time experiments, which works well as designed.