• Title/Summary/Keyword: 백악기

Search Result 479, Processing Time 0.028 seconds

운장산일대에 분포하는 백악기 화강암류의 암석 및 암석화학

  • 윤현수;홍세선;박석환;김주용;양동윤;이병태
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.288-290
    • /
    • 2003
  • 전북진안의 운장산일대에 분포하는 백악기 홍색 흑운모 화강암류는 연구지역의 동부와 서부에서 각각 원형 및 타원형의 독립된 암체로 발달한다. 서부 화강암체의 흑운모연령 (K/Ar 법)은 백악기초기(김옥준, 1971)로 보고된 바 있어, 같은 암석학적 특성을 가지는 동부암체도 거의 같은 시기의 것으로 해석된다. 동부와 서부 화강암체에는 공동구조(miarolitic)가 도처에서 산점상으로 발달하며, 이들은 부분적으로 다소 큰 형태를 이루기도 한다. (중략)

  • PDF

Stratigraphy and Petroleum Geochemical Characteristics of Jiaolai Basin in Shandong Province of China (중국 교래분지의 층서와 석유지화학적 특성)

  • Cheong, Tae-Jin;Oh, Jae-Ho;Lee, Young-Joo;Kim, Ji-Hoon
    • The Korean Journal of Petroleum Geology
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Jiaolai Basin is the Cretaceous continental sedimentary basin developed in Shandong Province of China. It is interpreted as a pull-apart basin which is filled with fluvio-lacustrine sediments and volcanic rocks. The sedimentary strata are divided into three formations: Laiyang Formation, Qingshan Formation and Wangshi Formation in ascending order. Laiyang Formation of the early Cretaceous consists of conglomerate, sandstone and shale, which are grey, black or red in color, respectively. Qingshan Formation of early Cretaceous includes various kinds of volcanic rocks. Late Cretaceous Wangshi Formation consists of red conglomerate, sandstone and shale. Various types of oil shows are observed on many outcrops in the basin such as asphalt filing fissures, oil smelling, rocks wetted with oil. However, commercial oil discovery was not made. Laiyang Formation is the richest in terms of organic matter contents. Some grey or black shales of Laiyang Formation contain more than 1% of organic matter. Kerogens of some layers mainly consist of amorphous organic matter or pollen. Thermal maturity of the organic matter reached main oil generation zone and hydrocarbon genetic potential is fairly good. According to such geochemical data, some layers of Laiyang Formation can act as hydrocarbon source rocks.

  • PDF

Petrology of the Cretaceous Volcanic Rocks in the Hampyeong Area (함평지역 백악기 화산암류에 대한 암석학적 연구)

  • Cho, Dong-Hyun;Yun, Sung-Hyo;Koh, Jeong-Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.93-114
    • /
    • 2009
  • Lithological and petrochemical characteristics and tectonic setting of the Cretaceous volcanic rocks in Hampyeong area located in the southwestern part of Okchon Zone, were studied by field survey and petrochemistry of major, trace, and rare earth elements. The $SiO_2$contents of the volcanic rocks range from 50.8 to 77.2wt.%. With increasing $SiO_2$, $Al_2O_3$, $Fe_2O_3\;^T$, $TiO_2$, MnO, CaO and MgO contents decrease and $K_2O$content increase, but $Na_2O$content is scatter to the trend. According to TAS and AFM diagrams, the Cretaceous volcanic rocks are calc-alkaline series. On the discrimination diagram of $K_2O$versus $SiO_2$, the volcanic rocks belong to high-K rocks series. The trace element compositions and REE patterns of the volcanic rocks, characterized by a high LILE/HFSE ratio and enrichments in LREE, indicate that they are typical of continental margin arc calc-alkaline volcanic rocks associated with the subduction environment. The ratios of Ba/Ta and Ba/La indicate that they are associated with volcanic arc-related magmatism. The Cretaceous volcanic rocks in Hampyeong area might be located in the Eurasian continental margin, related to the Pacific type tectonic environment during the Cretaceous times.

Touristic Aspects of Geological Heritages -Cretaceous Dinosaur Fossil Sites- (지질유산의 관광자원으로서의 특성과 활용 -국내 백악기 공룡화석산지를 중심으로-)

  • Paik, In Sung;Kim, Sook Ju;Huh, Min;Lee, Soo Jae;Kim, Hyun Joo;Lim, Jong Deok
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.4-27
    • /
    • 2010
  • In this article, concepts, types, and aspects of geological heritage with increasing interests as utilization as tourist attractions domestically and internationally are introduced, and the characteristics of the interpretive facilities for geological heritages in western Australia, one of the most famous geotourism areas, are considered. Based on this, the potential geotourism for the Korean Cretaceous geological heritages including dinosaur fossil sites is discussed in diverse aspects including academic values, academic and tourism infrastructures, characteristics of geotourists, systematic devices for conservation of geological heritage, economic value, and sustainability as tourist attractions. Although the Korean Cretaceous geosites are not quite competent in their scale or diversity when compared to world-class geosites, convenient access, world-class unique geographical characteristics of each geosites, and relatively cheaper travelling expenses seems to be able to give the geotourism of the South Korean Cretaceous geosites a competitive edge, attractive for international and domestic tourists seeking unique experience of 'Age of dinosaurs' for short periods with easy access from metropolitan areas and low costs. Likewise, the development of geotourism for the Korean Cretaceous geosites can revitalize the geotourism industry in South Korea, contributing to the growth in job opportunities, including students majoring in geological sciences at University.

문경지역에 분포하는 변성 염기성암과 변성 퇴적암에 대한 백악기 화강암의 열변성작용

  • 오창환;김성원;김종섭
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.74-94
    • /
    • 1993
  • Metabasites and metapelites in the Mungyong area were intruded by Cretaceous granites with radius of 4-8 km. As the distance from granite body increases, the mineral assemblage of metabasite changes from amphibole + plagioclase through amphibole + plagioclase + epidote to amphibole + plagioclase + epidote + chlorite. The compositional variations of amphibole and plagioclase according to the change of metamorphic grade and bulk rock compositions are very complex. Towards the Mungyong Cretaceous granite body, the mineral assemblage of metapelite changes from chlorite+ muscovite(ch1orite zone) through biotite + chlorite + muscovite(biotite zone) to andalusite+biotite + muscovite${\pm}$chlorite or cordierite+ biotite+ muscovite${\pm}$chlorite(cordierite zone). The estimated metamorphic conditions of cordierite zone are 480~$580^{\circ}C$ 1.5-3.3 kb. The theoretical study on the thermal metamorphism caused by the Cretaceous granite with radius longer than 4 km in the Mungyong area suggests the followings: The degree of metamorphism is mainly determined not by the size of granite body but by the temperature of granite intrusion; The country rocks within 2 km from Cretaceous granite have undergone metamorphism with temperature higher than $500^{\circ}C$, which is consistent with the petrological study in the Mungyong area. Mungyong Cretaceous granite caused a low P/T thermal metamorphism to the country rocks; the amphibolite facies metamorphism to the country rocks within 1-2 km from the granite body and the epidote-amphibolite and greenschist facies metamorphism to the country rocks within 2-5 km.

  • PDF

Magnetic Characterization of the Cretaceous Rocks from the Buyeo and Hampyeong Basins (부여분지와 함평분지에 분포하는 백악기 암석에 대한 자기특성 연구)

  • Hong, Jun-Pyo;Suk, Dong-Woo;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.191-207
    • /
    • 2007
  • A paleomagnetic investigation for the Cretaceous rocks in the Buyeo and Hampyeong Basins, located out of the Gyeongsang Basin, was carried out in order to elucidate the paleomagnetic directions in conjunction with the formation of the basins. Typical stepwise thermal demagnetization and measurement methods were used to determine the directions of characteristic remanent magnetizations (ChRMs). The mean direction of the sedimentary rocks from the Buyeo Basin after bedding correction $(D/I=356.5^{\circ}/61.5^{\circ},\;k=39.3\;\alpha_{95}=7.4^{\circ})$, is more dispersed than that before bedding correction $(D/I=356.5^{\circ}/61.5^{\circ},\;k=39.3\;\alpha_{95}=7.4^{\circ})$, which suggests that the rocks in the Buyeo Basin were remagnetized. However, the statistics and dispersion of the ChRM directions after bedding correction are still acceptable and the paleomagnetic pole position after tilt correction $(Lat./Long.=69.3^{\circ}N/186.7^{\circ}E,\;K=11.6\;A_{95}=14.0^{\circ})$ is closer to that of the Late Cretaceous pole of the Korean Peninsula. More detailed study is needed to confirm the nature of the remagnetization in the Buyeo Basin. On the other hand, the paleomagnetic pole before bedding correction $(Lat./Long.=81.6^{\circ}N/106.9^{\circ}E,\;K=25.1\;A_{95}=9.3^{\circ})$ is positioned near the paleogene pole of the Eurasian APWP. The mean ChRM direction of the sedimentary rocks from the Hampyeong Basin after bedding correction is $D/I=32.5^{\circ}/55.4^{\circ},\;(k=35.6,\;\alpha_{95}=8.7^{\circ})$. It is more clustered than that before bedding correction $D/I=18.3^{\circ}/62.5^{\circ},\;k=14.1,\;\alpha_{95}=14.2^{\circ})$, indicating that the ChRM was acquired before tilting of the strata. The paleomagnetic pole position of the Cretaceous sedimentary rocks in the Hampyeong Basin, averaged out of site pole positions calculated from the tilt-corrected ChRMs, is $Lat./Long.=63.9^{\circ}N/202.7^{\circ}E,\;(K=21.3,\;A_{95}=7.6^{\circ})$, similar to the Late Cretaceous paleomagnetic pole of the Korean Peninsula $(Lat./Long.=70.9^{\circ}N/215.4^{\circ}E,\;A_{95}=5.3^{\circ})$, suggesting that the Hampyeong Basin has been stable since the Late Cretaceous period. One normal and two reversed ChRM directions are revealed through the measurements of the volcanic rocks from the Hampyeong Basin. Although these normal and reversed directions are not exactly antipodal, it is interpreted that the normal direction is the representative primary direction of the volcanic rocks of the Hampyeong Basin and the mixed polarity is the records of geomagnetic field at the time of the formation of the volcanic rocks. Paleomagnetic poles are at $Lat./Long.=70.2^{\circ}N/199.5^{\circ}E,\;(K=18.1,\;A_{95}=9.6^{\circ})$ for the normal direction, and $Lat./Long.=65.5^{\circ}S/251.3^{\circ}E,\;(K=7.1,\;A_{95}=20.7^{\circ})$ for the reversed direction. Compared with the representative pole positions of the Cretaceous period of the Korean Peninsula, it is concluded that the age of the volcanic rocks in the Hampyeong Basin is of the Late Cretaceous.

Lockeia gigantus ichnosp. nov. in the Lacustrine Deposits of the Early Cretaceous Jinju Formation, Southern Coast of Korea (남해안 전기 백악기 진주층의 호성 퇴적층에서 산출된 Lockeia gigantus ichnosp. nov.)

  • Kim, Kyung-Soo;Kim, Jeong-Yul
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.13-28
    • /
    • 2008
  • About 450 specimens of Lockeia were discovered from the lacustrine siltstone of the Early Cretaceous Jinju Formation of Jin Island, southern coast of Korea. They are very elongated, seed-shaped Lockeia characterized by a large size, mostly 60-70 mm long and 15-20 mm wide. They are characteristically sharp longitudinal furrow bounded by steeply inclined both margins, elevated marginal rims and sharp pointed both longitudinal furrow ends. This trace fossil is herein described as Lockeia gigantus ichnosp. nov. Plicatounio, a freshwater bivalve which does not occur occurs occasionally within Lockeia gigantus is regarded as the most-likely producer of this resting trace fossil. This new trace fossil represents the largest Lockeia ever known and the first record of Lockeia from the Cretaceous non-marine deposits in the world. This fossil also represents an unusual example of resting trace fossil (Lockeia) associated with a possible producer (bivalve Plicatounio) lived in community in the shallow lacustrine environment.

Geological Interpretation on the Cretaceous Strata in the Haenam Area, Chollanamdo, Korea (전남 해남지역에 분포한 백악기층의 지질해석)

  • Koh, Sang Mo;Chang, Ho Wan
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.381-393
    • /
    • 1996
  • Cretaceous volcanics and volcaniclastic sediments are abundantly distributed in the Haenam area located at the tip of the southwestern part of the Yongdong-Kwangju depression zone. The Cretaceous strata correlated with the Yuchon Group of the Kyongsang Supergroup are divided into three formations: Hwawon Formation, Uhangri Formation and Haenam Formation in ascending order. The stratovolcanic Hwawon Formation is mainly composed of andesite and andesitic pyroclastics. The Uhangri Formation is the lacustrine sedimentary deposit. The Haenam Formation is composed of Hwangsan tuff, Haenam tuff, Yongdang tuff, Seoho tuff, and also Acidic lava, both being formed by a cogenetic acidic volcanism. The topographic circular structure of the Cretaceous strata was controlled by the doming of Jurassic Sani granite. Cretaceous volcanism in the study area is characterized by the two stages of intermediate volcanic activity in Cenomanian to Albian, and acidic volcanic activity in Campanian to Coniacian.

  • PDF

Biogeochemical Cycles during the mid-Cretaceous Oceanic Anoxic Event 2 (백악기 중기 해양 무산소 사건 2 동안의 생지화학적 순환)

  • Joo, Young Ji
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.569-578
    • /
    • 2022
  • Oceanic Anoxic Event 2 (OAE2) represents a period of mid-Cretaceous when black shale was deposited worldwide. This short period of perturbations in the global biogeochemical cycles spans the Cenomanian-Turonian boundary, marking the peak of the Cretaceous greenhouse, which is characterized by elevated atmospheric pCO2, sealevel highstand, and expansion of oxygen minimum zone. Since the pioneering work in the 1970s, numerous studies have investigated the cause and consequences of the event based on geochemical and isotope proxies, and it is now widely accepted that the enhanced primary production and volcanism during the Cenomanian-Turonian boundary interval were the key environmental factors that triggered OAE2. This study briefly reviews previous OAE2 studies of the carbon, sulfur, and trace metal cycles for mechanistic understanding of the biogeochemical processes during the event.

Preliminary Results from Sandstone Petrography of the Icheonri Formation in Gijang-gun, Busan: Implications for Provenance and Tectonic Setting (부산 기장군에 분포하는 백악기 이천리층 사암 조성의 예비 연구: 기원지와 조구조 역사 해석에의 의의)

  • Young Ji Joo;Heeseon Yang;Kyeongtae Kim;Hyun Ju Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.161-168
    • /
    • 2023
  • While numerous previous studies investigated the provenance and tectonic history of the Gyeongsang Supergroup, less are known about other Cretaceous strata in South Korea. This study presents preliminary results from petrographic analysis of the Cretaceous Icheonri Formation distributed in Gijang-gun, Busan. Based on the immature texture and composition of the Icheonri sediments, we interpret that they were derived from weakly denudated Cretaceous arc volcanoes developed along the eastern margin of the Asian continent, with limited weathering and transport. Additionally, the presence of chrome spinel grains in the sediments suggests the existence of ultramafic bodies exposed in their provenance. Further studies will advance our understanding of the tectonic developments in the southeastern Gyeongsang Basin, and facilitate a comprehensive correlation between the Icheonri Formation and the Gyeongsang Supergroup.