DOI QR코드

DOI QR Code

백악기 중기 해양 무산소 사건 2 동안의 생지화학적 순환

Biogeochemical Cycles during the mid-Cretaceous Oceanic Anoxic Event 2

  • 주영지 (부경대학교 환경지질과학전공)
  • Joo, Young Ji (Major of Environmental Geosciences, Pukyong National University)
  • 투고 : 2022.08.15
  • 심사 : 2022.08.25
  • 발행 : 2022.10.31

초록

백악기 중기, 세노마눔절-투로니아절에 발생한 해양 무산소 사건인 Oceanic Anoxic Event 2 (OAE2)는 다량의 유기물을 포함한 흑색셰일이 전세계적으로 퇴적된 단기간의 탄소 순환 교란 사건이다. 백악기 후기의 온실 지구의 환경(높은 CO2농도, 고해수면, 해양의 무산소 환경 확장)은 탄소, 황 및 여타 주요 원소의 생지화학 순환의 교란과 밀접하게 상호 작용하였다. 1970년대 최초 명명 이후 동위원소를 포함한 화학적 지시자 연구가 활발하게 진행되었으며, 그 결과 화산 활동과 해양 표층의 유기물 생산 증가가 무산소 환경 발달의 주된 원인으로 여겨진다. 본 논평에서는 OAE2의 기작을 탄소 및 황, 미량 금속원소의 순환을 중심으로 살펴보고자 한다.

Oceanic Anoxic Event 2 (OAE2) represents a period of mid-Cretaceous when black shale was deposited worldwide. This short period of perturbations in the global biogeochemical cycles spans the Cenomanian-Turonian boundary, marking the peak of the Cretaceous greenhouse, which is characterized by elevated atmospheric pCO2, sealevel highstand, and expansion of oxygen minimum zone. Since the pioneering work in the 1970s, numerous studies have investigated the cause and consequences of the event based on geochemical and isotope proxies, and it is now widely accepted that the enhanced primary production and volcanism during the Cenomanian-Turonian boundary interval were the key environmental factors that triggered OAE2. This study briefly reviews previous OAE2 studies of the carbon, sulfur, and trace metal cycles for mechanistic understanding of the biogeochemical processes during the event.

키워드

과제정보

이 논문은 부경대학교 자율창의학술연구비(2020년)에 의하여 연구되었다. 또한 지구과학회지 편집위원 및 두 분의 심사위원의 세심한 조언에 감사드린다.

참고문헌

  1. Adams, D.D., Hurtgen, M.T., Sageman, B.B., 2010, Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2. Nature Geoscience, 3, 201-204. https://doi.org/10.1038/ngeo743
  2. Algeo, T.J., 2004, Can marine anoxic events draw down the trace element inventory of seawater? Geology, 32, 1057-1060. https://doi.org/10.1130/G20896.1
  3. Ando, A., Nakano, T., Kaiho, K., Kobayashi, T., Kokado, E., Khim, B.-K., 2009, Onset of seawater 87Sr/86Sr excursion prior to Cenomanian-Turonian oceanic anoxic event 2? New Late Cretaceous strontium isotope curve from the central Pacific Ocean. Journal of Foraminiferal Research, 39, 322-334. https://doi.org/10.2113/gsjfr.39.4.322
  4. Arthur, M.A., Dean, W.E., Schlanger, S.O., 1985. Variations in the Global Carbon Cycle During the Cretaceous Related to Climate, Volcanism, and Changes in Atmospheric CO2, In Sundquist, E., Broecker, W. (eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, 504-529.
  5. Barclay, R.S., McElwain, J.C., Sageman, B.B., 2010, Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nature Geoscience, 3, 205-208. https://doi.org/10.1038/ngeo757
  6. Bellenger, J.-P., Wichard, T., Xu, Y., Kraepiel, A.M.L., 2011, Essential metals for nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency. Environmental Microbiology, 13, 1395-1411. https://doi.org/10.1111/j.1462-2920.2011.02440.x
  7. Berner, R.A., Raiswell, R., 1983, Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, 47, 855-862. https://doi.org/10.1016/0016-7037(83)90151-5
  8. Brumsack, H.-J., 2006, The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 344-361. https://doi.org/10.1016/j.palaeo.2005.05.011
  9. Caraco, N., Cole, J., Likens, G., 1989, Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature, 341, 316-318. https://doi.org/10.1038/341316a0
  10. Caraco, N.F., Cole, J.J., Likens, G.E., 1993, Sulfate control of phosphorus availability in lakes. Hydrobiologia, 253, 275-280. https://doi.org/10.1007/BF00050748
  11. Demaison, G.J., Moore, G.T., 1980, Anoxic environments and oil source bed genesis. AAPG Bulletin, 64, 1179-1209.
  12. Du Vivier, A.D.C., Selby, D., Sageman, B.B., Jarvis, I., Grocke, D.R., Voigt, S., 2014, Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 389, 23-33. https://doi.org/10.1016/j.epsl.2013.12.024
  13. Forster, A., Schouten, S., Moriya, K., Wilson, P.A., Sinninghe Damste, J.S., 2007, Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial Atlantic. Paleoceanography, 22, PA1219.
  14. Friedrich, O., Erbacher, J., Moriya, K., Wilson, P.A., Kuhnert, H., 2008. Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean. Nature Geoscience 1, 453-457. https://doi.org/10.1038/ngeo217
  15. Gomes, M.L., Hurtgen, M.T., Sageman, B.B., 2016, Biogeochemical sulfur cycling during Cretaceous oceanic anoxic events: A comparison of OAE1a and OAE2. Paleoceanography, 31, 233-251. https://doi.org/10.1002/2015PA002869
  16. Grasby, S.E., Them, T.R., Chen, Z., Yin, R., Ardakani, O.H., 2019, Mercury as a proxy for volcanic emissions in the geologic record. Earth-Science Reviews, 196, 102880. https://doi.org/10.1016/j.earscirev.2019.102880
  17. Haq, B.U., 2014, Cretaceous eustasy revisited. Global and Planetary Change, 113, 44-58. https://doi.org/10.1016/j.gloplacha.2013.12.007
  18. Hetzel, A., Bottcher, M.E., Wortmann, U.G., Brumsack, H.-J., 2009, Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 302-328. https://doi.org/10.1016/j.palaeo.2008.11.005
  19. Hong, S.K., Lee, Y.I., 2012, Evaluation of atmospheric carbon dioxide concentrations during the Cretaceous. Earth and Planetary Science Letters, 327-328, 23-28. https://doi.org/10.1016/j.epsl.2012.01.014
  20. Huber, B.T., Norris, R.D., MacLeod, K.G., 2002, Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 30, 123-126.
  21. Ingall, E.D., Bustin, R., Van Cappellen, P., 1993, Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochimica et Cosmochimica Acta, 57, 303-316. https://doi.org/10.1016/0016-7037(93)90433-W
  22. Jarvis, I.A.N., Gale, A.S., Jenkyns, H.C., Pearce, M.A., 2006, Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian-Campanian (99.6-70.6 Ma). Geological Magazine, 143, 561-608. https://doi.org/10.1017/S0016756806002421
  23. Jenkyns, H.C., 2010, Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11, Q03004 https://doi.org/10.1029/2009GC002788
  24. Jenkyns, H.C., Gale, A.S., Corfield, R.M., 1994, Carbonand oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine, 131, 1-34. https://doi.org/10.1017/S0016756800010451
  25. Jenkyns, H.C., Matthews, A., Tsikos, H., Erel, Y., 2007, Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography, 22, PA3208.
  26. Jones, C.E., Jenkyns, H.C., 2001, Seawater Strontium Isotopes, Oceanic Anoxic Events, and Seafloor Hydrothermal Activity in the Jurassic and Cretaceous. American Journal of Science, 301, 112-149. https://doi.org/10.2475/ajs.301.2.112
  27. Joo, Y.J., Sageman, B.B., 2014, Cenomanian To Campanian Carbon Isotope Chemostratigraphy from the Western Interior Basin, U.S. Journal of Sedimentary Research, 84, 529-542. https://doi.org/10.2110/jsr.2014.38
  28. Joo, Y. J., B. B. Sageman, and M. T. Hurtgen, 2020, Datamodel comparison reveals key environmental changes leading to Cenomanian-Turonian Oceanic Anoxic Event 2. Earth-Science Reviews, 203, 103123. https://doi.org/10.1016/j.earscirev.2020.103123
  29. Keeling, C.., Piper, S.C., Bacastow, R.B., Wahlen, M, Whorf, T.P., Heimann, M., and Meijer, H.A., 2001, Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps Institution of Oceanography, San Diego, 88 p.
  30. Kerr, A.C., 1998, Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? Journal of the Geological Society, 155, 619-626. https://doi.org/10.1144/gsjgs.155.4.0619
  31. Kolonic, S., 2004, Mechanism and biochemical implication of Cenomanian-Turonian black shale formation in north Africa: an integrated geochemical millennial-scale study from the Tarfaya-Laayoune Basin in SW Morocco. Berichte Fachbereich Geowissenschaften, 174.
  32. Kuroda, J., Ogawa, N., Tanimizu, M., Coffin, M., Tokuyama, H., Kitazato, H., Ohkouchi, N., 2007, Contemporaneous massive subaerial volcanism and late cretaceous Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 256, 211-223. https://doi.org/10.1016/j.epsl.2007.01.027
  33. Lowenstein, T.K., Hardie, L.A., Timofeeff, M.N., Demicco, R.V., 2003, Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology, 31, 857-860.
  34. MacLeod, K.G., Huber, B.T., Berrocoso, A.J., Wendler, I., 2013, A stable and hot Turonian without glacial δ18O excursions is indicated by exquisitely preserved Tanzanian foraminifera. Geology, 41, 1083-1086.
  35. MacLeod, K.G., Martin, E.E., Blair, S.W., 2008, Nd isotopic excursion across Cretaceous ocean anoxic event 2 (Cenomanian-Turonian) in the tropical North Atlantic. Geology, 36, 811-814. https://doi.org/10.1130/G24999A.1
  36. Meyers, S.R., Siewert, S.E., Singer, B.S., Sageman, B.B., Condon, D.J., Obradovich, J.D., Jicha, B.R., Sawyer, D.A., 2012, Intercalibration of radioisotopic and astrochronologic time scales for the CenomanianTuronian boundary interval, Western Interior Basin, USA. Geology, 40, 7-10.
  37. Mort, H.P., Adatte, T., Follmi, K.B., Keller, G., Steinmann, P., Matera, V., Berner, Z., Stuben, D., 2007, Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology, 35, 483-486.
  38. Murray, T.E., 1995, The correlation between iron sulfide precipitation and hypolimnetic phosphorus accumulation during one summer in a softwater lake. Canadian Journal of Fisheries and Aquatic Sciences, 52, 1190-1194. https://doi.org/10.1139/f95-115
  39. Nederbragt, A.J., Thurow, J., Vonhof, H., Brumsack, H.-J., 2004, Modelling oceanic carbon and phosphorus fluxes: implications for the cause of the late Cenomanian Oceanic Anoxic Event (OAE2). Journal of the Geological Society, 161, 721-728. https://doi.org/10.1144/0016-764903-075
  40. Neubert, N., Nagler, T.F., Bottcher, M.E., 2008, Sulfidity controls molybdenum isotope fractionation into euxinic sediments: Evidence from the modern Black Sea. Geology, 36, 775-778. https://doi.org/10.1130/G24959A.1
  41. Ogg, J.G., Hinnov, L.A., Huang, C., 2012, Chapter 27: Cretaceous, In Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (eds.), The Geologic Time Scale, 793-853.
  42. Orth, C.J., Attrep, M., Quintana, L.R., Elder, W.P., Kauffman, E.G., Diner, R., Villamil, T., 1993, Elemental abundance anomalies in the late Cenomanian extinction interval: a search for the source(s). Earth and Planetary Science Letters, 117, 189-204. https://doi.org/10.1016/0012-821X(93)90126-T
  43. Owens, J.D., Reinhard, C.T., Rohrssen, M., Love, G.D., Lyons, T.W., 2016, Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth's carbon cycle. Earth and Planetary Science Letters, 449, 407-417. https://doi.org/10.1016/j.epsl.2016.05.046
  44. Owens, J.D., Gill, B.C., Jenkyns, H.C., Bates, S.M., Severmann, S., Kuypers, M.M.M., Woodfine, R.G., Lyons, T.W., 2013, Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2. Proceedings of the National Academy of Sciences, 110, 18407-18412. https://doi.org/10.1073/pnas.1305304110
  45. Owens, J.D., Lyons, T.W., Li, X., Macleod, K.G., Gordon, G., Kuypers, M.M.M., Anbar, A., Kuhnt, W., Severmann, S., 2012, Iron isotope and trace metal records of iron cycling in the proto-North Atlantic during the Cenomanian-Turonian oceanic anoxic event (OAE-2). Paleoceanography, 27, PA3223.
  46. Palmer, M.R., Edmond, J.M., 1989, The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, 92, 11-26. https://doi.org/10.1016/0012-821X(89)90017-4
  47. Pedersen, T.F., Calvert, S.E., 1990, Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary Rocks? AAPG Bulletin, 74, 454-466.
  48. Percival, L.M.E., Jenkyns, H.C., Mather, T.A., Dickson, A.J., Batenburg, S.J., Ruhl, M., Hesselbo, S.P., Barclay, R., Jarvis, I., Robinson, S.A., Woelders, L., 2018, Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events. American Journal of Science, 318, 799-860. https://doi.org/10.2475/08.2018.01
  49. Pogge von Strandmann, P.A.E., Jenkyns, H.C., Woodfine, R.G., 2013, Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geoscience, 6, 668-672. https://doi.org/10.1038/ngeo1875
  50. Pratt, L.M., 1985. Isotopic studies of organic matter and carbonate in rocks of the Greenhorn marine cycle, In Pratt, L.M., Kauffman, E.G., Zelt, F.B. (eds.), FineGrained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes, 38-48.
  51. Raven, M.R., Keil, R.G., Webb, S.M., 2021, Microbial sulfate reduction and organic sulfur formation in sinking marine particles. Science, 371, 178. https://doi.org/10.1126/science.abc6035
  52. Raven, M.R., Sessions, A.L., Fischer, W.W., Adkins, J.F., 2016, Sedimentary pyrite δ34S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur. Geochimica et Cosmochimica Acta, 186, 120-134. https://doi.org/10.1016/j.gca.2016.04.037
  53. Sageman, B.B., Meyers, S.R., Arthur, M.A., 2006, Orbital time scale and new C-isotope record for CenomanianTuronian boundary stratotype. Geology, 34. 125-128. https://doi.org/10.1130/G22074.1
  54. Sageman, B.B., Singer, B.S., Meyers, S.R., Siewert, S.E., Walaszczyk, I., Condon, D.J., Jicha, B.R., Obradovich, J.D., Sawyer, D.A., 2014, Integrating 40Ar/39Ar, U-Pb, and astronomical clocks in the Cretaceous Niobrara Formation, Western Interior Basin, USA. Geological Society of America Bulletin, 126, 956-973. https://doi.org/10.1130/B30929.1
  55. Scaife, J.D., Ruhl, M., Dickson, A.J., Mather, T.A., Jenkyns, H.C., Percival, L.M.E., Hesselbo, S.P., Cartwright, J., Eldrett, J.S., Bergman, S.C., Minisini, D., 2017, Sedimentary Mercury Enrichments as a Marker for Submarine Large Igneous Province Volcanism? Evidence From the Mid-Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous). Geochemistry, Geophysics, Geosystems, 18, 4253-4275. https://doi.org/10.1002/2017GC007153
  56. Schlanger, S.O., Jenkyns, H.C., 1976, Cretaceous Oceanic Anoxic Events: Causes and Consequences. Geologie En Mijnbouw, 55, 179-184.
  57. Scott, C., Lyons, T.W., 2012, Contrasting molybdenum cycling and isotopic properties in euxinic versus noneuxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology, 324-325, 19-27. https://doi.org/10.1016/j.chemgeo.2012.05.012
  58. Sinton, C.W., Duncan, R.A., 1997, Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian-Turonian boundary. Economic Geology, 92, 836-842. https://doi.org/10.2113/gsecongeo.92.7-8.836
  59. Snow, L.J., Duncan, R.A., Bralower, T.J., 2005, Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2. Paleoceanography, 20, PA3005.
  60. Stoll, H.M., Schrag, D.P., 2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? GSA Bulletin 112, 308-319. https://doi.org/10.1130/0016-7606(2000)112<308:HSIRFT>2.0.CO;2
  61. Takashima, R., Nishi, H., Huber, B.T., Leckie, R.M., 2006. Greenhouse world and the Mesozoic ocean. Oceanography, 19, 82-92. https://doi.org/10.5670/oceanog.2006.07
  62. Takashima, R., Nishi, H., Yamanaka, T., Hayashi, K., Waseda, A., Obuse, A., Tomosugi, T., Deguchi, N., Mochizuki, S., 2010, High-resolution terrestrial carbon isotope and planktic foraminiferal records of the Upper Cenomanian to the Lower Campanian in the Northwest Pacific. Earth and Planetary Science Letters, 289, 570-582. https://doi.org/10.1016/j.epsl.2009.11.058
  63. Tsikos, H., Karakitsios, V., Van Breugel, Y., WalsworthBell, B.E.N., Bombardiere, L., Petrizzo, M.R., Sinninghe Damste, J.S., Schouten, S., Erba, E., Silva, I.P., Farrimond, P., Tyson, R.V., Jenkyns, H.C., 2004, Organic-carbon deposition in the Cretaceous of the Ionian Basin, NW Greece: the Paquier Event (OAE 1b) revisited. Geological Magazine, 141, 401-416. https://doi.org/10.1017/S0016756804009409
  64. Turgeon, S.C., Creaser, R.A., 2008, Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature, 454, 323. https://doi.org/10.1038/nature07076
  65. Van Cappellen, P., Ingall, E.D., 1996, Redox Stabilization of the Atmosphere and Oceans by Phosphorus-Limited Marine Productivity. Science, 271, 493-496. https://doi.org/10.1126/science.271.5248.493
  66. Wortmann, U.G., Chernyavsky, B.M., 2007, Effect of evaporite deposition on Early Cretaceous carbon and sulphur cycling. Nature, 446, 654-656. https://doi.org/10.1038/nature05693
  67. Zheng, X.-Y., Jenkyns, H.C., Gale, A.S., Ward, D.J., Henderson, G.M., 2013, Changing ocean circulation and hydrothermal inputs during Ocean Anoxic Event 2 (Cenomanian-Turonian): Evidence from Nd-isotopes in the European shelf sea. Earth and Planetary Science Letters, 375, 338-348. https://doi.org/10.1016/j.epsl.2013.05.053
  68. Zheng, X.-Y., Jenkyns, H.C., Gale, A.S., Ward, D.J., Henderson, G.M., 2016, A climatic control on reorganization of ocean circulation during the midCenomanian event and Cenomanian-Turonian oceanic anoxic event (OAE 2): Nd isotope evidence. Geology, 44, 151-154.