• Title/Summary/Keyword: 백스텝핑

Search Result 17, Processing Time 0.029 seconds

Tracking Control of BLDC Motor Based on Disturbance Observer (외란 관측기 기반의 BLDC 전동기 추종제어)

  • Jeon, Yong-Ho;Lee, Shin-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.907-912
    • /
    • 2020
  • When designing a controller, a motor can have robust and precise control performance only by considering the error of the motor's mathematical model and the disturbance acting on it. For robust and precise control, the mechanical and electrical disturbance observers were designed to estimate the disturbance, and applied to the speed controller and current controller designed as a nominal system. To confirm the control performance of the designed system, it is applied to a 120 [W] class BLDC motor, and the result of the speed tracking control overcomes disturbances, the steady state error converges to zero, and the asymptotically stable result can be confirmed.

Longitudinal Control of the Lead Vehicle of a Platoon in IVHS using Backstepping Method (Backstepping 방법을 이용한 IVHS에서의 차량군 리드 차량의 종렬제어기 설계)

  • 박종호;정길도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.137-144
    • /
    • 2000
  • In this paper, a longitudinal control of the lead vehicle for a platoon in IVHS Regulation Layer is proposed. The backstepping method has been used for the controller design. This method has an advantage in that its stability need not be proven since the controller is designed based on the Lyapunov Function. The control object is that the lead vehicle tracks a reference velocity and maintains a safe distance between the inter-platoons while the followers are keeping the speed of the lead vehicle of a platoon. The coordinate of system is transformed to a new coordinate system for its convenience to design controller. The new coordinate system is composed of error and new error variable. The error is the difference between the safe distance and the actual distance of inter-platoons. A new error variable is the difference between the velocity of vehicle and the estimated state of a system operated by the virtual input. The Lyapunov function is obtained based on the variables of new coordinate system. In the computer simulation, several cases have been studied such as when the lead vehicle is tracking the optimal speed. or a lead vehicle of the following platoon tracks the velocity of the previous platoon while maintaining a safe distance. Also a nonlinear engine time constant case has been investigated. All the simulation results show that the designed controller satisfies the control object sufficiently.

  • PDF

Design of a Missile Guidance Law via Backstepping and Disturbance Observer Techniques Considering Missile Control System Dynamics (백스텝핑 방법과 외란관측기법에 의한 미사일 제어시스템의 동역학을 고려한 미사일 유도법칙의 설계)

  • Song, Seong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.88-94
    • /
    • 2008
  • In this paper, a design method of a missile guidance command is presented considering the dynamics of missile control systems. The design of a new guidance command is based on the well-known PNG(propotional navigation guidance) laws. The missile control system dynamics cause the time-delays of the PN guidance command and degrade the performance of original guidance laws which are designed under the assumption of the ideal missile control systems. Using a backstepping method, these time-delay effects can be compensated. In order to implement the guidance command developed by the backstepping procedure, it is required to measure or calculate the successive time-derivatives of the original guidance command, PNG and other kinematic variables such as the relative distance. Instead of directly using the measurements of these variables and their successive derivatives, a simple disturbance observer technique is employed to estimate a guidance command described by them. Using Lyapunov method, the performance of a newly developed guidance command is analyzed against a target maneuvering with a bounded and time-varying acceleration.

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Jung, Seung-Hwan;Choy, Ick;Cho, Whang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of Interior Permanent Magnet Synchronous Motor (IPMSM). First, in order to improve the performance of speed tracking, a nonlinear back-stepping controller is designed. In addition, since it is difficult to achieve the high quality control performance without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. Finally, for the efficiency of power consumption of the motor, controller is designed to operate motor with the minimum current for the required maximum torque. The proposed controller is tested through experiment with a 1-hp Interior Permanent Magnet Synchronous Motor (IPMSM) for the angular velocity reference tracking performance and load torque volatility estimation, and to test the Maximum Torque per Ampere (MTPA) operation. The result verifies the efficacy of the proposed controller.

Speed Control of the IPMSM Using The Torque Output Feedback (IPMSM의 토크출력피드백을 이용한 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.93-100
    • /
    • 2018
  • This study proposes a controller that compensates torque error for precise angular velocity tracking and a method to compensate the stability of controller in implementation. Also, it is proved that the designed controller can be asymptotically stable based on Lyapunov stability theory. The proposed controller is able to control the d-axis reference current to arbitrary values and easily achieve control performance with two gains. As a result of applying to IPMSM of about 750W class, the steady state error with reference speed 1200 [RPM] is within 0.1 [%]. And it can be seen that it is an asymptomatic stable controller overcoming disturbance within about 0.2 second in application of constant load of about 5 [Nm].

Performance Improvement for Back-stepping Controller of a Mobile Robot Based on Fuzzy Systems (퍼지추론을 이용한 이동로봇의 백스테핑 제어기 성능개선)

  • 박재훼;진태석;이만형
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.308-316
    • /
    • 2003
  • This paper describes a tracking control for the mobile robot based on fuzzy systems. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot, which is affected by the derived velocity reference by a kinematic controller. To improve the performance of conventional back-stepping controller, this paper uses the fuzzy systems known as the nonlinear controller. In this paper, the new velocity reference for the back-stepping controller is derived through the fuzzy inference. Fuzzy rules are selected for gains of the kinematic controller. The produced velocity reference has properly considered the varying reference trajectories. And simulation results show that the proposed controller is more robust than the conventional back-stepping controller.

Real-time Aircraft Upset Detection and Prevention Based On Extended Kalman Filter (확장칼만필터를 이용한 항공기 비정상 비행상황 판단 및 방지를 위한 실시간 대처법 연구)

  • Woo, Beomki;Park, On;Kim, Seungkeun;Suk, Jinyoung;Kim, Youdan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.724-733
    • /
    • 2017
  • Accidents caused by upset condition leads to fatal damage to both manned and unmanned aircraft. This paper deals with real-time detection of these aircraft upset situations to prevent further severe situations. Firstly, the difference between sensor measurement and predicted measurement from Extended Kalman filter is monitored to determine whether a target aircraft goes into an upset condition or not. In addition, repeating the time update stage of the Extended Kalman filter for a specific length of time can enable future upset situation prediction. The results of aforementioned both the approaches will build a bridge to upset prevention for future generation of manned/unmanned aircraft.