• Title/Summary/Keyword: 배 재배지

Search Result 270, Processing Time 0.029 seconds

Physico-Chemical Properties of Rainfall Interception Culture and Open Field Culture Soils of Rubus sp. In Gochang-gun, Jeollabuk-do (고창지역 복분자 비가림하우스 토양과 노지토양의 물리·화학적 특성)

  • Chung, Byung-Yeoup;Lee, Kang-Soo;Kim, Myung-Kon;Choi, Young-Hee;Kim, Moo-Key;Cho, Jae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.303-309
    • /
    • 2008
  • The physico-chemical properties of the rainfall interception culture (85 sites) and the open field culture soils (85 sites) in the area of Gochang-gun, Jeollabuk-do were surveyed. Soil textural distribution of the rainfall interception culture and the open field culture soils was 74% and 64% for silt loam, 16% and 35% for loam, and 10% and 1% for clay, respectively. The percentage of aggregate rates was higher in the open field culture soils (60.06%) than rainfall interception culture soils (55.84%). Electrical conductivity, exchangeable cations, and anions in the rainfall interception culture soils were higher than those in open field soils. Specially, accumulated amount of anion in rainfall interception culture soils was remarkably higher 2~3 times than open field culture soils. The results from the analyses of rainfall interception culture soils suggested that the most critical problem is the salts accumulation caused by over-fertilization of chemical fertilizer and compost. Therefore, application rates of chemical fertilizer and compost should be controlled in order to conservation of soil and water for sustainable agriculture.

Differences in Phenolic Compounds between Korean Ginseng and Mountain Ginseng (고려인삼과 장뇌삼의 페놀성 성분 비교 연구)

  • 유병삼;이호재;변상요
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.120-124
    • /
    • 2000
  • Differences in phenolic $\infty$mpounds were observed between cultured and mountain ginsengs. Cinnamic acid and p-hydroxy­b benzoic acid in Korean mountain ginseng and Chinese mountain ginseng were much higher than those in Korean ginseng. C Contents of the esculetin in Korean cultured ginseng and Korean mountain ginseng were higher than that in Chinese m mountain ginseng. The highest contents of esculetin in Korean mountain ginseng was$47.2\mu\textrm{g}/g$. Contents of the ferulic acid a and caffeic acid in red $\infty$lored Korean mountain ginseng were higher than any other ginseng.

  • PDF

Selection and Application of Pollinating Insects to Improve Seed Production of Buckwheat in Net House (메밀의 망실재배시 종자생산성 향상을 위한 수분곤충의 선발과 활용법 구명)

  • Kim, Su Jeong;Sohn, Hwang Bae;Nam, Jeong Hwan;Lee, Jong Nam;Suh, Jong Taek;Chang, Dong Chil;Kim, Yul Ho
    • Korean Journal of Plant Resources
    • /
    • v.35 no.1
    • /
    • pp.10-22
    • /
    • 2022
  • This study investigated field data to understand the spatio-temporal distribution of pollinating insects and buckwheat flowers. We set the in-situ observation sites in different locations to get altitude and cropping system distribution data for five years (2016 to 2020) in Korea. Twenty-five different insect species, belonging to 8 orders, were recorded. Over the past five years, species from the orders Diptera and Hymenoptera were the principal visitors. Hymenoptera was mainly represented by honey bees (Apis cerana), while Diptera was represented by bean seed fly (Delia platura) and several other species. Some bees and other Hymenoptera species could, however, act as co-pollinators because of their high relative frequency and activity. Compared with open-field cultivation (conventional), the pollination mediating effect of flies and bees was superior in net house, so the yield was high, and it was also found to be slightly higher in the mixed treatment of flies and bees than in the single treatment. Based on the above results, flies and bees were found to be the most active pollinating insects in buckwheat and it is necessary to actively utilize the selected insects to improve buckwheat productivity. This relationship will be utilized in establishing the system of seed production on pollinating regulation of a primary plant.

Relationship between Fertilizer Application Level and Soil Chemical Properties for Strawberry Cultivation under Greenhouse in Chungnam Province (충남지역 시설 딸기재배지 시비수준과 토양 화학성과의 관계)

  • Choi, Moon-Tae;Lee, Jin-Il;Yun, Yeo-Uk;Lee, Jong-Eun;Lee, Bong-Chun;Yang, Euy-Seog;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.153-159
    • /
    • 2010
  • Nowadays, Korean farmers rely more on chemical fertilizers than low input sustainable agriculture drawn from the farm itself. In order to improve soil nutritional imbalance for environment friendly agriculture in greenhouse, we have carried out a relationship between fertilizer application level, and soil chemical properties for strawberry cultivation at 56 sites in Chungnam Province. Average amount of nitrogen as basal fertilization was 92.3 Mg $ha^{-1}$ which higher 2.6 times compared to standard amount of basal fertilizer. In case of compost application more than 30 Mg $ha^{-1}$, excessive ratio compared to optimum level was higher 1.8 times for EC value, 3.0 times for available phosphate, 2.6 times for exchangeable potassium, 1.7 times for exchangeable calcium, and 1.6 times for exchangeable magnesium, respectively. Amounts of compost application significantly correlated with available phosphate (r=0.370, $p{\leq}0.01$), exchangeable potassium(r=0.429, $p{\leq}0.01$), exchangeable calcium(r=0.404, $p{\leq}0.01$), exchangeable magnesium(r=0.453, $p{\leq}0.01$), and exchangeable sodium(r=0.369, $p{\leq}0.01$), respectively. Our results suggest that soil nutrients management for sustainable agriculture was optimum fertilization based on soil testing for strawberry cultivation in greenhouse.

Changes of pesticide residues in bagged pear and bagging paper during the field and storage (재배 및 저장기간 중 유대재배 배의 농약잔류량 변화)

  • Ihm, Yang-Bin;Kyung, Kee-Sung;Park, Young-Sup;Lee, Hee-Dong;Kim, Jin-Bae;Im, Gun-Jae;Ryu, Gab-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.293-299
    • /
    • 2002
  • This experiment was conducted to elucidate the effects of fruit bagging on the amounts of pesticide residues on/in pears with two pesticides, chlorpyrifos 25% WP, and penconazole 5% WP, and two pear cultivars, Niitaka and Hwangeum-bae. Residues of chlorpyrifos and penconazole in bagged pears were only $0.4{\sim}27%$ of those in non-bagged one. Residues of both pesticides in bagged and non-bagged pears were steeply reduced in the field but slowly reduced during storage. Residues of chlorpyrifos were more in the peel than in the flesh, while penconazole in bagged pear was evenly distributed in the peel and flesh. Chlorpyrifos was evenly distributed in outer bag and inner bag irrespective of bag materials, while most of penconazole was found in outer bag rather than in inner bag. To produce safer pear from pesticide residues, removal of bag before storage is recommended.

Changes of Pepper Yield and Chemical Properties of Soil in the Application of Different Green Manure Crops and No-Tillage Organic Cultivation (무경운 유기재배에서 녹비작물별 고추의 수량과 토양 화학성 변화)

  • Yang, Seung-Koo;Seo, Youn-Won;Kim, Yong-Soon;Kim, Sun-Kook;Lim, Kyeong-Ho;Choi, Kyung-Ju;Lee, Jeong-Hyun;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.255-272
    • /
    • 2011
  • This work studied the growth and yield of green crops, changes of mineral composition in greenhouse soil and green crops, and infection with wintering green crops cultivation in greenhouse field. At 74 days after seeding of wintering green crops, dry matter was 710kg/10a in rye, 530kg/10a in barley, 230kg/10a in hairy vetch, and 240kg/10a in bean or weeds. Total nitrogen content in green crops was 4.5% in pea and hairy vetch, and 3~4% in barley and rye. $P_2O_5$, CaO, and MgO contents in all green crops were about 1.0%, and $K_2O$ content was the highest level by 4~5% among macro elements. Total nitrogen fixing content in shoot green crops uptaken from soil was 22.1kg/10a in rye, 20.6kg/10a in barley, 10.6kg/10a in hairy vetch, and 9.6kg/10a in pea and giant chickweed. $P_2O_5$ fixing content in shoot green crops uptaken from soil was 8.4kg/10a in rye, 6.3kg/10a in barley, and 2.3 kg/10a in hairy vetch and pea. $K_2O$ fixing content in shoot green crops uptaken from soil was 28kg/10a in rye, 24.7kg/10a in barley, and 11kg/10a in hairy vetch and pea. CaO fixing content in shoot green crops uptaken from soil was 2~3kg/ 10a in all green crops, and MgO fixing content was 1.7~2.6kg/10a in all green crops. Pepper growth in no-tillage was not a significant difference at all green manure crops. The number of fruit and fruit weight were higher in control, pea, hairy vetch and harvest barley than rye and barley. Soil mineral compositions in wintering green crops increased at pH, organic matter, CEC compared with control. Soil chemical compositions were stable level at green crops cultivation according as decreases of EC, available phosphoric acid, Ca, and Mg contents. After no-tillage by green manure crops, pH in soils was higher in green manure crops than control. EC content in soils was lower in green manure crops than control, and was remarkably low level in barley harvest. Organic matter content in soils increased in hairy vetch and barley green manure but decreased by 35% in barley harvest. Total nitrogen and avaliable $P_2O_4$ content in soils remarkably increased but was not a significant difference at all green manure crops. Cation (K, Ca, and Mg) content in soils decreased by 15~20% in K, 2~11% in Ca, and 3~6% in Mg at rye, barley and pea compared with control.

A Study on the Mitigation of Nitrous Oxide emission with the Horticultural Fertilizer of Containing Urease Inhibitor in Hot Pepper and Chinese Cabbage Field (고추와 배추 재배지에서 요소분해효소 억제제 함유 원예용 비료 시용에 따른 아산화질소 배출 저감 효과)

  • Ju, Ok Jung;Lim, Gap June;Lee, Sang Duk;Won, Tae Jin;Park, Jung Soo;Kang, Chang Sung;Hong, Soon Sung;Kang, Nam Goo
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.235-242
    • /
    • 2018
  • BACKGROUND: About 81% of nitrous oxide ($N_2O$) emissions from agricultural land to the atmosphere is due to nitrogen (N) fertilizer application. Mitigation of $N_2O$ emissions can be more effective in controlling biochemical processes such as nitrification and denitrification in the soil rather than decreasing fertilizer application. The use of urease inhibitors is an effective way to improve N fertilizer efficiency and reduce $N_2O$ emissions. Several compounds act as urease inhibitors, but N-(n-butyl) thiophosphoric triamide (NBPT) has been used worldwide. METHODS AND RESULTS: Hot pepper and chinese cabbage were cultivated in five treatments: standard fertilizer of nitrogen-phosphorus-potassium(N-P-K, $N-P_2O_5-K_2O$: 22.5-11.2-14.9 kg/ha for hot pepper and $N-P_2O_5-K_2O$: 32.0-7.8-19.8 kg/ha for chinese cabbage), no fertilizer, and NBPT-treated fertilizer of 0.5, 1.0, and 2.0 times of nitrogen basal application rate of the standard fertilizer, respectively in Gyeonggi-do Hwaseong-si for 2 years(2015-2016). According to application of NBPT-treated fertilizer in hot pepper and chinese cabbage, $N_2O$ emission decreased by 19-20% compared to that of the standard fertilizer plot. CONCLUSION: NBPT-treated fertilizer proved that $N_2O$ emissions decreased statistically significant in the same growth conditions as the standard fertilization in the hot pepper and chinese cabbage cultivated fields. It means that NBPT-treated fertilizer can be applied for N fertilizer efficiency and $N_2O$ emissions reduction.

Effects of Substrate and Nutrient Solution Concentration on Growth and Essential Oil Content of Sweet Basil (Ocimum basilicum) (Sweet basil(Ocimum basilicum)의 생장과 정유함량에 미치는 배지 종류와 배양액 농도의 영향)

  • Baeck, Hae-Won;Park, Kuen-Woo
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.92-97
    • /
    • 2001
  • This experiment was conducted to find out optimum substrate and concentration of nutrient solution for mass production of sweet basil by pot culture. Growth depending on concentration of nutrient solution was different to some extent; the growth of plants was usually better in one-fold and two-fold concentration of nutrient solution but three-fold one was poor. Plants grown in cocopeat showed better growth, but peatmoss gave an adverse effect. Sweet basil grown in substrate mixed with cocopeat and perlite (1:1, v:v) was highest in essential oil content. After all, cultural practice by one-fold concentration of herb nutrient solution in substrate mixed with cocopeat and perlite (1:1, v:v) was recommended for better growth and higher essential oil content of sweet basil.

  • PDF

Survey on the Green house Flower Soil Chemicophysical Properties and Amount of Fertilizers and Soil Amendment Applications (시설화훼(施設花卉) 재배지(栽培地) 토양(土壤)의 이화학성(理化學性)과 화학비료(化學肥料) 및 토양개량제(土壤改良制) 시용량(施用量) 조사(調査))

  • Hwang, Ki-Sung;Noh, Dae-Chul;Ho, Qyo-Soon
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.132-135
    • /
    • 1998
  • This study was conducted to obtain basic information for soil improvement in flower crop cultivating greenhouse soil through survey on the chemical and physical properties of greenhouse soils. Total of 85 Flowcultivating farms were surveyed and analysis was done on the soil characteristics, amounts of chemical fertilizer and soil amendmentuse. The result are as follows: In soil properties of flower cultivating greenhousees, silt clay loam was 51%and 68% of the surveyed soils had good drainage condition. Ground water table was over 90-120cm which was optimum range for flower cultivation. Flower cultivating farms had problem with accumulation of fertility. Nitrate nitrogen was accumulated in Gypsophila paniculate farms and available phosphorus, and exchangeable postassium were significantly higher in greenhouse soils about 2 times than in open field soil. Application amount of chemical feltilizers in greenhouses were nitrate 211,phosphorus 135, and potassium 132kg/ha, respectively. Amount of organic matter used in greenhouse were high in order of cattle manure> compost> organic fertilizer> poultry manure> swine manure and their application amounts were69, 103, 32, 20, and 43 MT/ha, respectively.

  • PDF

Carbon and Nitrogen Stocks of Trees and Soils in a 'Niitaka' Pear Orchard ('신고'배 재배지 내 수체 및 토양의 탄소 및 질소 저장량)

  • Lee, Tae-Kyu;Choi, Jang-Jeon;Kim, Jong-Sung;Lee, Han-Chan;Ro, Hee-Myong
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.828-832
    • /
    • 2013
  • To report country-specific carbon and nitrogen stocks data in a pear orchard by Tier 3 approach of 2006 IPCC guidelines for national greenhouse gas inventories, an experimental pear orchard field of the Pear Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration, Naju, Korea ($35^{\circ}01^{\prime}27.70N$, $126^{\circ}44^{\prime}53.50^{\prime\prime}E$, 6 m altitude), where 15-year-old 'Niitaka' pear (Pyrus pyrifolia Nakai cv. Niitaka) trees were planted at a $5.0m{\times}3.0m$ spacing on a Tatura trellis system, was chosen to assess the total amount of carbon and nitrogen stocks stored in the trees and orchard soil profiles. At the sampling time (August 2012), three trees were uprooted, and separated into six fractions: trunk, main branches, lateral branches (including shoots), leaves, fruits, and roots. Soil samples were collected from 0 to 0.6 m depth at 0.1 m intervals at 0.5 m from the trunk. Dry mass per tree was 4.7 kg for trunk, 13.3 kg for main branches, 13.9 kg for lateral branches, 3.7 kg for leaves, 6.7 kg for fruits, and 14.1 kg for roots. Amounts of C and N per tree were respectively 2.3 and 0.02 kg for trunk, 6.4 and 0.07 kg for main branches, 6.4 and 0.09 kg for lateral branches, 6.5 and 0.07 kg for roots, 1.7 and 0.07 kg for leaves, and 3.2 and 0.03 kg for fruits. Carbon and nitrogen stocks stored between the soil surface and a depth of 60 cm were 138.29 and $13.31Mg{\cdot}ha^{-1}$, respectively, while those contained in pear trees were 17.66 and $0.23Mg{\cdot}ha^{-1}$ based on a tree density of 667 $trees{\cdot}ha^{-1}$. Overall, carbon and nitrogen stocks per hectare stored in a pear orchard were 155.95 and 13.54 Mg, respectively.