• Title/Summary/Keyword: 배합수량

Search Result 88, Processing Time 0.026 seconds

Properties of Controlled Low-Strength Material Containing Bottom Ash (Bottom Ash를 혼합한 저강도 고유동 충전재의 특성)

  • 원종필;이용수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.294-300
    • /
    • 2001
  • The effectiveness of bottom ash on the mechanical and physical properties of Controlled Low-Strength Material(CLSM) is investigated in this study, CLSM is defined by the ACI Committee 229 as a cementitious material that is in a flowable state at the time of placement and having a specified compressive strength of 83 kgf/$\textrm{cm}^2$ or less at the age of 28 days. This study was undertaken on the use of bottom ash as a fine aggregate in CLSM. Four different levels of bottom ash with fly ash contents, 25%, 50 %, 75%, 100%, are investigated. Laboratory test results conclude that inclusion of bottom ash increases the demand for mixing water in obtaining the required flow. However, the sand was reduced because it was adjusted to maintain a constant total volume. Miかe proportions were developed for producing CLSM at three 28-day strength levels: removal with tools (less than 7 kgf/$\textrm{cm}^2$), mechanical means (less than 20 kgf/$\textrm{cm}^2$), and power equipment (less than 83 kgf/cm\`). The physical and mechanical properties supports the concept that by-product bottom ash can be successfully used in CLSM.

The Characteristics of Strength of Development and Hydration Heat on High Volume Fly-Ash Concrete (플라이애쉬 치환율이 높은 콘크리트의 강도 발현 및 수화열 특성)

  • Park, Chan-Kyu;Lee, Seung-Hoon;Kim, Han-Jun;Kim, Sang-Jun;Lee, Tae-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.417-420
    • /
    • 2008
  • In this study, the characteristics of strength development and hydration heat on high volume fly ash concrete(HVFAC) was experimentally investigated. Two levels of W/B were selected. Seven levels of fly ash replacement ratios and two levels of silica fume replacement ratios were adopted. In the concrete mix, the water content of $125kg/m^3$ was used, which is less than that of usual water content. As a result, it appeared that the compressive strength gradually decreased with increasing fly ash replacement ratio at the early age, but the difference of strength up to replacement ratio of 50% was little at the age of 91 days because of the pozzolanic reaction of fly ash. The effect of hydration heat reduction on the concrete was affected by the fly ash replacement ratio. When the replacement ratio was over 30%, the reduction efficiency of hydration heat was large.

  • PDF

Property Evaluation of the Concrete Replacing 5-13mm Recycled Coarse Aggregates (5~13mm 입도분급 순환 굵은 골재 혼합사용에 따른 콘크리트의 특성평가)

  • Han, Min-Cheol;Song, Young-Wo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 2017
  • This paper is to investigate experimentally the effect of substitution of recycled coarse aggregate(RCA) under 13mm on the engineering properties of the concrete using gap graded coarse aggregates. Concretes with 0.4 of water to cement ratio(W/C) were fabricated to achieve 30MPa of design strength with coarse aggregate over 13mm in size with the maximum size of 25mm. RCA was substituted for coarse aggregate over 13mm from 10% to 50% and crushed coarse aggregate under 13mm was also substituted for coarse aggregate over 13mm from 20% to 40%, respectively. Test results indicated that the replacement of RCA up to 20% resulted in an increase of fluidity and strength. It also caused a decrease in the drying shrinkage due to dense packing effect by achieving continuous grading of mixed aggregates. For practical application of RCA, when properly substituted, the use of RCA enabled the concrete to reduce water contents and sand to aggregate ratio in mixing design stage of the concrete. And, it can also enhance the compressive strength of the concrete.

Effects of Using Cold Water on Mixing Sawdust Media for Flammulina velutipes (고온기 팽이버섯 병재배 배지제조시 저온수 이용 효과)

  • Cheong, Jong-Chun;Jhune, Chang-Sung;Kim, Seung-Hwan;Won, Hang-Yeon;Kwon, Jae-Geon
    • Journal of Mushroom
    • /
    • v.3 no.4
    • /
    • pp.140-144
    • /
    • 2005
  • This study was conducted to verify the cause of suppression symptom in mycelial growth during summer and to be able to establish a countermeasure. Cultivation of Flammulina velutipes was experimented with varying elapsed time of 0, 3, 6, 9 hours after mixing the sawdust media and two kinds of water temperature (normal water, $24^{\circ}C$ and cold water, $6^{\circ}C$) for mixing sawdust media. There were trends of increased media temperature from $24^{\circ}C$ to $31^{\circ}C$ and decreased pH from 6.5 to 5.2~5.6 with varying elapsed time from mixing the media to sterilization. Bacterial density also increased with bacterial density in Medium $24^{\circ}C$ being 1.9~4.1 times higher than that in Medium 6. Growth of F. velutipes was delayed with dual culture of bacteria isolated from sawdust media. Total nitrogen content of sawdust media was lowered by elapsed time from mixing the media to sterilization. The use of normal water($24^{\circ}C$) delayed mushroom growth by 1~2 days compared with that of cold water($6^{\circ}C$). Furthermore, mycelial growth of F. velutipes in the bottle cultivation ceased 9 hours after mixing the media. Primordia formation of F. velutipes was delayed by 1~3 days by elapsed time after mixing sawdust media, while fruit-body yield decreased by 7~12% 6 hours after mixing the media. Fruit-body yield was more stabilized with the use of cold water($6^{\circ}C$) than with that of normal water($24^{\circ}C$). Results showed that it is effective to use cold water as low as $6^{\circ}C$ in mixing media for F. velutipes cultivation, especially during summer when environmental temperature is high, high pressure sterilization after bottling work can prevent bacterial propagation in the media and can stabilize media ingredient.

  • PDF

An Optimum Harvest Time for Making Grinded Silage of Barley and Wheat for Whole Crop (총체맥류 분쇄 사일리지 조제를 위한 적정 수확시기)

  • Song, Tae-Hwa;Kang, Chon-Sik;Cheong, Young-Keun;Park, Jong-Ho;Park, Tae-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.264-270
    • /
    • 2017
  • This study was carried out to investigate the optimal harvesting time, feed value and fermentation quality of barley and wheat for the making of chopped whole crop silage substitute for formula feed. As a result, the moisture content of barley and wheat decreased with a late harvest, and barley progressed faster than wheat. The plant height was similar with harvesting time, and the number of spikes decreased with prolonged period after heading. The dry matter yield and TDN yield of barley harvested at 35 and 40 days after heading were significantly higher than those at 30 days after heading and wheat was significantly higher at 40 and 45 days than at 35 day after heading(p<0.05). Crude protein content of barley and wheat were increased with later harvesting time, and crude fiber, crude fat and crude ash were slightly decreased, but not statistically significant. NDF and ADF content of barley decreased with later harvesting time, and those showed similar level in wheat. TDN content of barely was slightly increased but there was no difference in wheat. Comparing the effects of fermentation on feed value of chopped whole crop silage, the approximate compositions were slightly increased after fermentation, but the difference was not significant. Fermentations resulted in increasing the pH value of barley silage with late harvesting time, but decreasing the lactic acid content(p<0.05). A pH value of wheat silage showed similar level in different harvest time, and lactic acid content was decreased. Considering the quantity and quality of fermentation, barley and wheat can be used for making chopped silage of whole crop silage when they were harvested at 35 days and 40~45 days after heading, respectively.

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF

Fundamental Properties of Low Strength Concrete Mixture with Blast Furnace Slag and Sewage Sludge (고로슬래그미분말 및 하수슬러지를 활용한 저강도 콘크리트의 기초적 물성)

  • Kwon, Chil Woo;Lim, Nam Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.136-144
    • /
    • 2013
  • In this study, in order to establish a plan that will enable safe use of renewable resources such as diverse industrial by-products and urban recycled materials, we conducted experiments that focused on flow, bleeding, compressive strength and environmental pollution evaluation to evaluate the material properties of low strength concrete using BFS and SS. In the case of low strength concrete using BFS and SS, blending of at least BFS 6000 within a 30% range regardless of the type of sand used was found to be the most effective approach for improving the workability by securing the minimum unit quantity of water, restraining the bleeding ratio and establishing compressive strength by taking account of the applicability at the work site. In particular, in view of the efficient use of SS, the optimal mixing condition was found to be the mixing of BFS 8000 with in the 30% range, not only for improving the workability restraining the bleeding ratio and establishing the compressive strength but also for application to the work site. Further, the results of tests on hazardous substance content and those of elution tests conducted on soil cement using SS indicated that all values satisfied the environmental standards without any harmful effects on the surrounding environment.

Evaluation of Chloride Bound Ratio in Cement Pastes by Pore Solution Analysis (세공용액분석에 의한 시멘트의 염화물 고정화율 평가)

  • 소승영;윤성진;소양섭
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.789-795
    • /
    • 2002
  • To evaluate the bind rate and behavior of two types chloride ion-one is the chloride ion added in mixture when un-washed sea sand is used as fine aggregate, one is the chloride ion admitted in the new version of concrete standard specification, pore solution extracted in cement paste were analyzed. The results are follow. 1 As passing the time, the chloride concentration in the pore solution decreases with the Increase in the chloride content absorbed by the hydrate products. As compared with chloride contents in mixing water, the bound ratio of chloride at 49 days is 64∼90%. 2. The bound ratio of chloride in cement paste considering evaporable water as pore solution is obtained. In case of Pl∼P3(added chloride content wt of cement 0.046∼0.16 %), the bound ratio of chloride is 91.8∼93.5 %. P4(added chloride wt of cement 0.3%) is 89.1%, but P5(added chloride wt of cement 0.617%) bound is only 77%. 3. The bound ratio of chloride to wt of cement is 0.015∼0.475% with adding chloride. In case chloride added over 0.091 % wt of cement, the bound chloride content increases 1.7∼1.8 times in spite of added chloride increase twice. The bound ratio of chloride to wt of cement decreased with the increase in the chloride content. 4. The more increase added chloride content, the more increase the bound ration of chloride. But the absolute value of chloride content in pore solution increased.

Evaluation of Bottom Ash on the Application for the Aggregate of Concrete (콘크리트용 골재로서의 Bottom Ash 활용성 평가)

  • Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.105-115
    • /
    • 2010
  • In this study, as one of solutions associated with the shortage of treatment area of industrial waste and the containment of its harmful components, the bottom ash which is known to be by-products of thermoelectric power plant was selected and its applicability for aggregate of concrete mixture was measured. Hardness test, sieve analysis, water-absorption test and SEM analysis were carried out to investigate the possibility of using bottom ash as a replacement of coarse and fine aggregate. Chemical analyses such as ignition loss test and X-ray incidence were carried out also. In addition, values for slump, strength, permeability, freeze and thaw, and carbonation were evaluated in terms of effects of replacement ratio of bottom ash. As the results, it was found that, though bottom ash is in short supply of fine particles and is in lack of cohesion, these problems can be solved by partially mixing with natural aggregates or improving in a process of production. In addition, bottom ash has not only advantage of durability but also acquirement of general compressive strengths in case that a certain proportion of natural aggregate is applied to mixture, in spite that unit water or chemical admixture should be increased to acquire good workability due to plenty of porosity.

  • PDF

Optimal substrate mixture ratio for mycelial growth of oyster mushroom in Lao PDR (라오스 느타리버섯 균사배양 배지의 적정 배합비율)

  • Chang, Hyun-You;Viengkham, Sengsoulivong;Phannourath, Viravahn;Baek, Woon-Ho;Yang, Kyu-Nam;Lee, Yong-Ha;Chang, Jong-Geun
    • Journal of Mushroom
    • /
    • v.5 no.2
    • /
    • pp.59-64
    • /
    • 2007
  • This study was carried out to investigate the mycelial growth and density of Laos oyster mushroom treated straw, rice hull, mixture rate of straw and rice hull and beer wastes respectively. In case of straw 70%, rice hull 40%, 50%, straw and rice hull 4 : 6, soil type and yeast type of Laos beer wastes mixture, the mycelial growth and density are the best respectively.

  • PDF