• 제목/요약/키워드: 배터리 열 관리

검색결과 33건 처리시간 0.023초

전기 자동차용 니켈수소 배터리 1차원 열전달 모델링 (One-Dimension Thermal Modeling of NiMH Battery for Thermal Management of Electric Vehicles)

  • 한재영;박지수;유상석;김성수
    • 대한기계학회논문집B
    • /
    • 제38권3호
    • /
    • pp.227-234
    • /
    • 2014
  • 전기 자동차의 연료 소모량은 배터리 성능에 의존한다. 배터리의 성능은 작동온도에 민감하기 때문에, 배터리 온도 관리는 성능과 내구성을 보장한다. 특히, 배터리 팩에서의 모듈의 온도 분포는 냉각특성에 영향을 미친다. 이 연구는 모듈 사이의 온도 분포를 확인 할 수 있는 배터리 열적 모델링에 초점을 두었다. 본 연구의 배터리 모델은 NiMH 각형 모델이며, 10개의 모듈로 구성되어졌다. 배터리 열 모델은 열 발생, 채널을 통과하는 대류 열 전달 그리고 모듈 사이의 전도 열 전달로 구성되었다. 배터리 내에서 발생되는 열발생 모델은 충/방전 동안의 전기적인 저항열에 의해 계산되어 진다. 모델은 전 하이브리드 자동차의 운전 동안 적절한 열관리의 전략을 결정한다.

전기구동 자동차용 리튬이온 배터리의 고효율 운전을 위한 냉방 및 난방 시스템 설계에 대한 이론적 접근법 (Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles)

  • 김대완;이무연
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.2545-2552
    • /
    • 2014
  • 본 연구에서는 전기구동 자동차에 동력원으로 사용되는 고전압 및 고용량 배터리의 고효율 운전을 위하여 배터리 열관리 시스템 기술을 소개하고 이론적 설계 방법에 소개하고 한다. 이를 위하여 전기구동 자동차의 배터리로 많이 사용되는 리튬이온 배터리의 고효율 운전을 위한 발열 모델링을 제시하였고, 열원의 종류에 따른 냉방 및 난방 시스템 설계를 에너지 평형식을 이용하여 부하를 계산하였다. 특히, 리튬이온 배터리의 발열 모델링을 이용하여 충전 및 방전 시 발열 반응열과 혹서기 및 혹한기시 배터리 작동의 최적 온도를 유지하기 위한 냉방과 난방 설계 기술을 제시하였다. 전기구동 자동차 종류에 따라 배터리 사용 비중이 다르기 때문에 효율적인 배터리 열관리를 위하여 계절별 및 작동 모드별 부하에 따른 배터리 열관리 기술을 제안하였다. 또한, 냉방 부하가 가장 큰 여름철 동일 조건에서 외부 공기 온도가 같다고 가정하면 냉방 능력은 수랭식 냉매 방법이 가장 크며 공랭식 방법이 가장 작게 나타난다.

단상계 침지냉각 기술이 적용된 Li-ion계 배터리 발열특성에 관한 연구 (A Study on Heating Characteristics of Li-ion Battery Applicated Single-phase Immersion Cooling Technology)

  • 김운학;강석원;신기석
    • 한국재난정보학회 논문집
    • /
    • 제18권1호
    • /
    • pp.163-172
    • /
    • 2022
  • 연구목적: Li-ion 배터리의 효율적인 열관리 기술을 확보하기 위하여 Single&-phase 침지 냉각 기술을 적용한 시스템의 실험을 통하여 적용가능성을 확인하고자 하였다. 연구방법: LG-Chem에서 생산된 JH3 파우치 셀을 사용하여 14S2P 모듈을 제조하여 미국 카길사에서 생산된 식물성계 냉각유체에 침지한 후 0.3C~1C 속도로 충방전을 시행하여 열분포를 확인하였다. 연구결과: 침지냉각 기술로 배터리 모듈을 40℃ 이하의 온도로 관리할 수 있으며, 침지액의 분자구조 변화가 없다는 결과를 도출하였다. 결론: 침지냉각 방식이 Li-ion 배터리 열관리에 적용 가능함을 확인하였다.

DBSCAN과 통계적 검증 알고리즘을 사용한 배터리 열폭주 셀 탐지 (Battery thermal runaway cell detection using DBSCAN and statistical validation algorithms)

  • 김진근;윤유림
    • 문화기술의 융합
    • /
    • 제9권5호
    • /
    • pp.569-582
    • /
    • 2023
  • 납축전지는 가장 오래된 충전식 배터리 시스템으로 현재까지 충전식 배터리 분야에서 자리를 지키고 있다. 이 배터리는 다양한 이유로 열폭주 현상이 생기는데 이는 큰 사고로 이어질 가능성이 있다. 그렇기 때문에 열폭주 현상을 예방하는 것은 배터리 관리 시스템의 핵심부분이다. 최근에는 열폭주 위험 배터리 셀을 기계학습으로분류하는 연구가 진행 중이다. 본 논문에서는 비지도학습인 DBSCAN 클러스터링과 통계적 방법을 사용하여 열폭주 위험 셀 탐지 및 검증 알고리즘을 제안하였다. BMS에서 측정한 lead-acid 배터리의 저항 값만을 사용하여 열폭주 위험 셀 분류 실험을 진행하였고 본 논문에서 제안한 알고리즘이 열폭주 위험 셀을 정확히 검출해 냄을 보여주었다. 또한 본 논문에서 제안한 알고리즘을 사용하여 배터리 내 열폭주 위험이 있는 셀과 노이즈가 심한 셀을 분류할 수 있었으며 그리드 서치를 통한 DBSCAN 파라미터 최적화를 통해 열폭주 위험 셀을 초기에 검출해 낼 수 있었다.

위험관리정보 - 9V 배터리의 단락회로 분석

  • 한국화재보험협회
    • 방재와보험
    • /
    • 통권137호
    • /
    • pp.38-43
    • /
    • 2010
  • 트랜지스터 또는 "트랜지스터 라디오" 배터리라고 부르고 어디에서나 흔히 볼 수 있는 9V PP3 건전지는 일반적으로 작은 크기로 인한 내부위험 또는 소각하여 폐기할 때에 발생하는 폭발 위험 이외의 중대한 위험을 내포하지 않는 것으로 알려져 있다. 후자의 위험은 모든 다른 배터리에도 적용된다. 그러나 약간 높은 에너지 밀도와 PP3 배터리 단자의 구조는 일부 사례에서 배터리의 낮은 내부 임피던스와 결합하여 단락 물질에 충분한 열을 발생시켜서 그것과 접촉하고 있는 가연물을 손상시키거나 점화시킬 수 있는 단락위험을 발생시킬 수 있다. 이 현상을 증명하기 위해 이 논문은 PP3 건전지의 단락시험에서 기록된 자료와 관찰사항을 기술한 것이다. 이 시험에는 2개 세트의 배터리, 완전 충전된 새 배터리와 완전 방전되지 않은 배터리(이 문서에서 "일부 사용된 배터리"라고 한다)를 사용하였다.

  • PDF

전기자동차용 배터리 및 열관리시스템 기술동향 (Thermal management system for electric vehicle batteries and technology trends)

  • 서현상;조행묵
    • 에너지공학
    • /
    • 제23권2호
    • /
    • pp.57-61
    • /
    • 2014
  • 자동차산업이 해결해야 할 과제로서 석유에너지의 소비증가와, $CO_2$ 배출에의한 지구온난화, 배기가스 배출에 의한 도시부 대기오염 등에 대한 대처가 필요한 시점이다. 이들의 해법으로 시장에서 높은 평가를 받고 있는 전기자동차의 필요성이 대두되고 있다. 본 연구에서는 전기자동차 모터, 배터 리 및 구동모터를 포함한 고전압 핵심부품들의 효율적인 열관리 기술, 배터리 및 구동모터의 열관리 기술 및 개발동향을 알아보고자 한다.

고용량/고출력 리튬 이차 전지의 열역학적 특성 분석 기반의 안전성 분석 방법에 대한 연구 (Study on the safety analysis method based on thermodynamic characteristics analysis for high capacity and high power lithium battery)

  • 강덕훈;김경진;김성근;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.37-39
    • /
    • 2020
  • 리튬이온 배터리는 동작하는 과정에서 필연적으로 열이 발생하기 때문에 적절한 열 관리에 대한 전략이 필요하다. 배터리에서의 발열은 가역적인 발열과 비가역적인 발열로 분류될 수 있으며 배터리의 용도별, 동작 조건 별 발열 특성이 상이하기 때문에, 배터리의 열적 안전성 확보를 위해서는 열적 특성에 대한 분석이 필수적이다. 본 연구에서는 고용량/고출력 리튬이온 배터리의 전기적 특성 실험을 수행하고 열적 안전성 분석을 위하여 발열 특성 분석을 수행하였다. 고용량/고출력 배터리 특성에 따라 가역적 발열과 비가역적 발열이 나타나는 특성이 상이한 것으로 확인되었으며, 또한 온도 측정 정보로부터 배터리의 내부 상태 특성을 추정하고 고장 진단 및 수명 특성에 활용될 수 있음을 확인하였다.

  • PDF

리튬이온 배터리의 열관리가 전기자동차 주행거리에 미치는 영향 (Effect of Thermal Management of Lithium-Ion Battery on Driving Range of Electric Vehicle)

  • 박철은;유세웅;정영환;김기범
    • 한국산학기술학회논문지
    • /
    • 제18권5호
    • /
    • pp.22-28
    • /
    • 2017
  • 전기자동차에 사용되는 리튬이온 배터리의 성능은 배터리 온도에 따라 큰 차이를 보인다. 본 논문에서는 유한차분법을 이용하여 배터리의 발열량에 따른 배터리의 온도변화를 평가하고, 배터리의 충전량, 내부저항 및 전압변화를 조사하였다. 이 배터리 모델을 1차원 해석 프로그램인 AMESim과 연동하여 전기자동차가 NEDC 모드로 주행 시, 배터리의 온도 변화에 따른 전기자동차의 주행거리를 산출하였다. 배터리는 온도가 $25^{\circ}C$ 이하로 감소하면 내부저항이 증가하기 때문에 발열량이 증가하여 주행거리는 줄었다. 또한, 배터리의 온도가 $25^{\circ}C$ 이상이 되면, 배터리의 충전량이 감소하여 배터리의 성능이 떨어지고 그 결과로 주행거리가 줄었다. 배터리의 성능을 최적으로 유지할 수 있는 온도인 $25^{\circ}C$를 기준으로 배터리의 온도가 $-20^{\circ}C$$45^{\circ}C$일 때, 전기자동차의 주행거리는 각각 33%와 1.8% 감소하였다. 배터리의 최적 온도를 유지하기 위해 효율적인 배터리 열관리를 통하여 저온에서는 가열, 고온에서는 냉각이 이루어져야 한다. 해석 결과 외기온이 $-20^{\circ}C$인 경우 500 W의 열을 공급해주어야 하며, 외기온이 $45^{\circ}C$ 경우에는 냉방을 통해 250 W의 열을 방출해줌으로써 배터리 구동의 최적 온도인 $25^{\circ}C$를 유지할 수 있다.

ARIMA 모델 기반의 리튬이온 배터리 SOH 예측 알고리즘 (Prediction Algorithm for Lithium Ion Battery SOH Based on ARIMA Model)

  • 김승우;박진형;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.56-58
    • /
    • 2019
  • 배터리의 효율적인 관리와 안정적인 운영을 위해서는 배터리의 노화에 따른 배터리의 모니터링이 필요하다. 하지만 모델 기반의 SOH 예측 모델의 경우 파라미터의 변화에 대한 정확한 정보가 반영되지 않을 경우 심각한 오류를 야기 할 수 있다. 따라서 본 논문에서는 비 모델인 시계열 예측 기법 ARIMA 모델을 제안하고 전기적 특성 실험을 통한 내부 파라미터에 대한 분석과 파라미터에 대한 상관분석, 이를 통한 SOH 예측을 통해 ARIMA 모델의 특성 및 정확성에 대해 제안한다.

  • PDF

전기자동차 배터리 시스템 개발을 위한 전산설계기술 (Computational Design of Battery System for Automotive Applications)

  • 정승훈
    • 융복합기술연구소 논문집
    • /
    • 제10권1호
    • /
    • pp.37-40
    • /
    • 2020
  • Automotive battery system consists of various components such as battery cells, mechanical structures, cooling system, and control system. Recently, various computational technologies are required to develop an automotive battery system. Physics-based cell modeling is used for designing a new battery cell by conducting optimization of material selection and composition in electrodes. Structural analysis plays an important role in designing a protective system of battery system from mechanical shock and vibration. Thermal modeling is used in development of thermal management system to maintain the temperature of battery cells in safe range. Finally, vehicle simulation is conducted to validate the performance of electric vehicle with the developed battery system.