• Title/Summary/Keyword: 배압단조

Search Result 6, Processing Time 0.018 seconds

Back-pressure cold forging analysis to minimize non-forming area of gear teeth (기어 치형의 미성형 구간 최소화를 위한 배압 냉간 단조 성형 해석)

  • Lee, Yongwoo;Kim, Janghoon;Kwon, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.256-262
    • /
    • 2016
  • This study performed the back-pressure cold forging analysis to minimize the non-forming area of gear teeth for the output hub and reaction hub in automatic transmission. Two important factors of the back-pressure cold forging process, the load of the punch and the backup force applied to the sleeve, were determined through displacement control analysis. The non-forming area of the gear teeth was compared with both cases of the displacement control analysis and load control analysis, and their solution is similar to the measuring result of a real workpiece. The results show that the load of the punch is dependent on the reduction area of the workpiece, and the backup force applied to the sleeve is determined with regard to the cross-section-area of sleeve. This analysis procedure can be useful and effective in determining the manufacturing condition of the back-pressure cold forging process to minimize the non-forming area.

Three-dimensional finite element analysis of forging processes with back pressure exerted by spring force (스프링 힘에 의한 배합부가 단조 공정의 3차원 유한요소해석)

  • Jang, S.M.;Kim, M.C.;Lee, M.C.;Jun, B.Y.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.470-473
    • /
    • 2009
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

  • PDF

The Technology to Control the Flow Velocity of Non-Symmetric Rib-Web Shape Hot Forged Part (비대칭 리브-웨브형상 열간 단조품의 변형 속도 제어 기술)

  • 이영선;이정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.209-215
    • /
    • 2000
  • Precision forging technology that can control flow velocity of workpiece have been developed to minimize the amounts of machining. To get the uniform rib length, flow velocity distribution is needed to be estimated and controlled. Computer-aided design is known for very effective to estimate the deformation behavior and design the die for controlling the flow velocity. In this study, die design to control the deformation velocity are investigated using the DEFORM-2D about rib-web shape parts. Also we can get uniform rib length by enforcing the back pressure at end section of rib. The applied load of back pressure farming is lower than that of conventional forging. These results are analysed and confirmed by the experiment.

  • PDF

A Study to improve dimensional accuracy of forged gear (단조기어 정밀도 향상을 위한 연구)

  • Lee, Y.S.;Jung, T.W.;Lee, J.H.;Cho, J.R.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.129-134
    • /
    • 2009
  • The dimension of forged part is different from that of die. Therefore, a more precise die dimension is necessarys to produce the precise part, considering the dimensional changes from forging die to final part. In this paper, both experimental and FEM analysis are performed to investigate the effect of several features including die dimension at each forging step and heat-treatment on final part accuracy in the closed-die upsetting. The dimension of forged part is checked at each stage as machined die, cold forged, and post-heat-treatment steps. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the DEFORM-$2D^{TM}$. The effect of residual stress after heat-treatment on forged part could be considered successfully by using DEFOAM-$HT^{TM}$.

  • PDF

Three-Dimensional Finite Element Analysis of Forging Processes with Back Pressure Exerted by Spring Force (스프링 힘에 의한 배압부가 단조 공정의 3차원 유한요소해석)

  • Jang, S.M.;Kim, M.C.;Lee, M.C.;Jun, B.Y.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.273-276
    • /
    • 2010
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

A Study on Improvement of Dimensional Accuracy of Cold forged Helical Gears using Back Pressure Forming (배압성형을 이용한 냉간단조 헬리컬 기어의 치수정밀도 향상에 관한 연구)

  • Kim, H.S.;Jung, H.C.;Lee, Y.S.;Kang, S.H.;Lee, I.H.;Choi, S.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.139-142
    • /
    • 2009
  • As important mechanical elements, gears have been used widely in power transferring systems such as automobile transmission and there have been several researches trying to make gear parts with cold or warm forging in order to reduce cost and time required to gear manufacturing process. Although forging processes of spur and bevel gears have been developed as practical level owing to active previous researches in Korea, the manufacturing of helical gear has been still depended on traditional gear cutting processes such as hobbing, deburring and shaving. In order to manufacture helical gears with cold forging process, a research project supported by government has been conducted by Daegu university, KIMS and TAK and this paper deals with effects of back pressure forming technique to cold forging of helical gear as a fundamental research.

  • PDF