• Title/Summary/Keyword: 배수층

Search Result 308, Processing Time 0.028 seconds

Landscape Changes of the Mujechi Moor, Mt. Jungjok (정족산 무제치늪의 경관발달)

  • 유호상;공우석
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.2
    • /
    • pp.101-109
    • /
    • 2001
  • The landscape changes at the Mujechi moors I and II during the last twenty two years were analysed using a tree ring analysis of pine trees, a distributional pattern of pine tree, an aerial photograph interpretation and a measurement of firebreak line. The analysis of aerial photographs(taken in 1978, 1988, 1998) indicates that the area of Mujechi moors I and II have gradually decreased. The decreased rate of moor area was relatively high, i.e.,-23.9 %(1978~1988) and -16.4 %(1998~1998) at the Mujechi moor I, but a little bit low, i.e., -2.6% (1978~1988) and -12.6 % (1998~1998) at the Mujechi moor II. However, dendrochronological analysis of pine trees at moors I and II shows that the appearance rates of pine trees per $100\textrm{m}^2$ at moor I and II were 0.28 and 0.57 respectively. And the number of younger pine trees(height is under 1.5m, DBH is less than 2.5 cm) invaded into moors are numbered eleven at the moor I, and ten at the moor II. This shows that the shift of a wetlands into a land was faster at the moor II than the moor I. The construction of a firebreak line and waterway along the moors I and II areas since the December, 1995, has diverted watershed flow and prohibited the runoff flow into the moors. The analysis of GIS suggests that the decreased watershed area were about $11,413.8\textrm{m}^2$(12.1 % of whole watershed area) at the moor I and $15,969.5\textrm{m}^2$(40.4 % of whole watershed area) at the moor II. The negative impact of firebreak line on the inflow of water into the moors I and II and destruction of vegetation along the firebreak line are noticeable from the field survey.

  • PDF

Temporal and Spatial Distributions of Basic Water Quality in the Upper Regions of Brackish Lake Sihwa with a Limited Water Exchange (물 교환이 제한적인 시화호 상류 기수역에서 기초수질의 시공간적 분포특성)

  • Choi, Kwnag-Soon;Kim, Sea-Won;Kim, Dong-Sup;Oh, Young-Taek;Heo, Woo-Myoung;Lee, Yun-Kyoung;Park, Yong-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.206-215
    • /
    • 2008
  • Temporal and spatial distributions of salinity, temperature, dissolved oxygen (DO), and turbidity were investigated at seven sites in the upper regions of brackish Lake Sihwa with a limited water exchange, from March to October 2005. During the study period, salinity and temperature varied $0.1{\sim}29.9\;psu$ and $4.7{\sim}28.1^{\circ}C$, respectively, depending on seasons and sites sampled. A distinct halocline profile showing the maximum density gradient (difference over $20\;psu\;m^{-1}$ between surface and bottom layers) was observed during the rainy season, due to the decrease of salinity in surface layers by freshwater inflow. This result implies that rainfall event is the important factor forming the halocline. On the other hand, the depth and location of haloeline varied with the amount of seawater through the sluice gates and the operation systems (inflow or outflow). High DO (over 300% saturation) was observed at surface layer above the halocline in April when red tide occurred, whereas low DO (below 20% saturation) was at the bottom layer below the halocline in the rainy season. Turbidity ranged $1.5{\sim}80.3\;NTU$ showing the maximum turbidity at the layers above or upper the halocline. As a result, the distributions of DO and turbidity in the upper regions of brackish Lake Sihwa were largely affected by the variation of salinity. Also, when the halocline was formed, the water quality between upper and lower water layers may be expected completely different. This study suggests that the physicochemical characteristics of water in the brackish regions are closely associated with the causes of eutrophication such as red tide and DO deficit.

Studies on the Organic Tiers Contained paddy Soils in Honam Area -II. Studies on the physicochemical characteristics of Organic Tiers and bearing power of soils (유기질토층(有機質土層)을 함유(含有)한 호남지역(湖南地域) 답토양(畓土壤)에 관(關)한 연구(硏究) -II. 유기질토층(有機質土層)의 이화학적(理化學的) 특성(特性) 및 토양(土壤)의 지지력(支持力))

  • Yoo, Chul-Hyun;Cho, Guk-Hyun;Choi, Jeong-Weon;Kim, Han-Myoung;Park, Keon-Ho;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.3
    • /
    • pp.187-194
    • /
    • 1986
  • Present stadies were carried out to obtain fundermental data for effective management of the soils by investigating the physicochemical characteristics rubber fiber, humification grade and bearing power of peats and muck which were included in Geongdeog series, and Gimje series in Honam area. The results abtained were as follows; 1. Humification grade of peats were about 23, while that of muck soils was about 45-71 and those were higher in Gimje series than Bongnam series. 2. The organic tiers which humification grade was higher were high pH, bulk density, and contents of K, $P_2O_5$, B.S and while were low OM, T-C, T-N, Na, $SiO_2$ and rubbed fiber. 3. In peats and mucks, bulk density, pH, contents of T-N $P_2O_5$ and ash were negatively correlated with rubbed fiber and OM, CEC, T-C, PAC, C/N, C/P were positively correlated with one, while these physicochemical characteristics were oppositely correlated with humification grade. 4. Cone bearing power of each soil tiers was low in every Geongdeog series which had the thick organic tiers and showed poorly drainage and it was the highest in Gimje series which was similar to in organic soils because of its thin organic tiers.

  • PDF

Growing Environment Characteristics and Vegetation Structure of Lonicera harae, Medicinal Plant (약용식물 길마가지나무 자생지의 생육환경특성과 식생구조)

  • Son, Yonghwan;Park, Sunghyuk;Jeong, Daehui;Cho, Hyejung;Son, Hojun;Jeon, Kwonseok
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.297-310
    • /
    • 2021
  • Lonicera harae is a species of shrub in the Caprifoliaceae family, mostly distributed in East asia. So far, the related research on the genus of Lonicera is insufficient compared to the Lonicera japonica belonging to the same genus, which requires attention to domestic native plants. Therefore, this study aims to provide baseline data for cultivation and utilization through the growth environment and vegetation structure of the natural habitat. Lonicera harae, which plant found throughout the Korean Peninsula. The natural habitats of Lonicera harae is the forest, valley and lowland areas of the southern region. study examined 24 quadrats in 11 regions, including Gwangju, Wanju and Namhae. As a result, environmental condition of Lonicera harae was 8 to 483 m above sea level, normally distributed over 173 m, Slope was 5 to 25 degree with 8.5 degree on average. The list of plants were classified as a total of 229 taxa comprising 80 families, 166 genus, 198 species, 3 subspecies, 24 varieties, 4 forma. As a result of the clustering analysis, the three clusters were divided into three groups; Robinia pseudoacacia, Zelkova serrata, Larix kaempferi. Species diversity was 1.399 and Dominance and Evenness were found to be 0.978 and 0.022 respectively.

A Study on the Influence of the Water System on the Location and Spatial Structure of Hongju-seong (수체계가 홍주성의 입지와 공간구조 변천과정에 미친 영향)

  • Lee, Kyung-Chan;Kang, In-Ae
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The purpose of this study is to analyze the influence of the water system on the location, spatial structure, and construction method of Hongju-eupseong, centering on Hongjumok-eupchi. During the Joseon Dynasty, the water system in Hongjumok-eupchi is composed of artificially constructed Seong-an Runnel and ponds based on a branch-shaped natural waterways flowing from south to north and west to east. Compiling the results of various literature records, excavations and analysis of map data, it can be seen that the water system has an important influence on the construction of Hongju-seong. Firstly, Hongju-seong from the Goryeo Dynasty to the late Joseon Dynasty is located using a circular shape of topographical structure and a small erosion basin formed on the inner side of the Hongseongcheon and Wolgyecheon streams without significant change in location. In particular, Wolgyecheon and Hongseongcheon are natural moats, which are harmonized with Sohyangcheon and riverside topographical structures, affecting the location and construction method of Hongju-seong, water related facilities, and the spatial structure of eupseong. It is understood that location characteristic of Hongju-seong reflects the urban location structure harmonized with waterways in ancient China and Korea. Secondly in harmony with the water system and topographic structure of Hongju-seong, it is an important factor in deciding the land use of the town, the arrangement of the town hall facilities and inducing various non-subsidiary measures such as the establishment of embankment forest with a secret function and the closure of the south gate. In addition, artificial drainage facilities such as Seongan runnel and ponds are being actively introduced from early on to protect the walls or towns from flooding of Wolgyecheon. Especially there were typical methods for protecting the walls from water damage such as the Joseon Dynasty stone castle structure that was integrated with saturn(soil wall) in the Goryeo Dynasty, retreating wall in the northern gate area in the late Joseon Dynasty, and the method of constructing wall using korean tile and stone floors between reinforced soil layers in the western and northern wall.

Analysis of Uncertainty in Ocean Color Products by Water Vapor Vertical Profile (수증기 연직 분포에 의한 GOCI-II 해색 산출물 오차 분석)

  • Kyeong-Sang Lee;Sujung Bae;Eunkyung Lee;Jae-Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1591-1604
    • /
    • 2023
  • In ocean color remote sensing, atmospheric correction is a vital process for ensuring the accuracy and reliability of ocean color products. Furthermore, in recent years, the remote sensing community has intensified its requirements for understanding errors in satellite data. Accordingly, research is currently addressing errors in remote sensing reflectance (Rrs) resulting from inaccuracies in meteorological variables (total ozone, pressure, wind field, and total precipitable water) used as auxiliary data for atmospheric correction. However, there has been no investigation into the error in Rrs caused by the variability of the water vapor profile, despite it being a recognized error source. In this study, we used the Second Simulation of a Satellite Signal Vector version 2.1 simulation to compute errors in water vapor transmittance arising from variations in the water vapor profile within the GOCI-II observation area. Subsequently, we conducted an analysis of the associated errors in ocean color products. The observed water vapor profile not only exhibited a complex shape but also showed significant variations near the surface, leading to differences of up to 0.007 compared to the US standard 62 water vapor profile used in the GOCI-II atmospheric correction. The resulting variation in water vapor transmittance led to a difference in aerosol reflectance estimation, consequently introducing errors in Rrs across all GOCI-II bands. However, the error of Rrs in the 412-555 nm due to the difference in the water vapor profile band was found to be below 2%, which is lower than the required accuracy. Also, similar errors were shown in other ocean color products such as chlorophyll-a concentration, colored dissolved organic matter, and total suspended matter concentration. The results of this study indicate that the variability in water vapor profiles has minimal impact on the accuracy of atmospheric correction and ocean color products. Therefore, improving the accuracy of the input data related to the water vapor column concentration is even more critical for enhancing the accuracy of ocean color products in terms of water vapor absorption correction.

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

A study on the ecological habitat and protection of natural Sorbus commixta forest at Mt. Seorak (설악산(雪嶽山)에 분포(分布)하는 마가목 천연림(天然林)의 생태환경(生態環境)과 보호(保護)에 관(關)한 연구(硏究))

  • Shin, Jai Man;Kim, Tong Su;Han, Sang Sup
    • Journal of Forest and Environmental Science
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1983
  • The purpose of this study was to elucidate the ecophysiological habitat of natural Sorbus commixta forest at Mt. Seorak. The results obtained were as follows: 1. The Sorbus commixta trees mainly distributed from 900m to 1,500m altitude. In there, the warm index(WI) was about 42$3.2{\times}10^3$ to $9.2{\times}10^3$, cation exchange capacity(CEC) was 13.7 to 19.5mg/100g, N content 0.21 to 0.39%, $P_2O_5$ content was 22.6 to 38.7ppm, and pH value was 5.6 to 5.8 respectively. 4. The upper crown trees in Sorbus commixta communities were Abies nephrolepis, Taxus cuspidata, Betula platyphylla var. japonica, Quercus${\times}$grosseserrata, Acer mono, Prunus sargentii, Carpinus cordata, Tilia amurensis, and the under crown trees were Rhododendron brachycarpum, Acer pseudo-sieboldianum, Thuja olientalis, Corylus heterohpylla, Philadelphus schrenckii, Rhododendron schlippenbachii, Rhododendron mucronulatum, and Magnolia sieboldii. 5. The stand densities were 1,156 trees/ha at 1,160m and 3,600 trees/ha at 1,300m respectively. The coverages by the DBH basal area were 0.37 at 1,160m and 0.31 at 1,300m respectively, and the vegetation coverages by the crown projection area were 2.04 at 1,160m and 1.61 at 1,300m respectively. 6. The light extinction coefficient(k) in Beer-Lambert's law, showed the distance, F(z), from top canopy to aboveground, was 0.17. 7. The water relations parameters of Sorbus commixta shoot were obtained by the pressure chamber technique. The osmotic pressure, ${\pi}_o$, at maximum turgor was -16.2 bar, and VAT pressure was 14.5bar. The osmotic pressure, ${\pi}_p$, at incipient plasmolysis was -19.4bar. The relative water contents at incipient plasmolysis were 83.1% ($v_p/v_o$) and 87.1%($v_p/w_s$;$w_s$, total water at maximum turgor). 8. The bulk modulus of elasticity(E) of shoot was about 69.6. The total symplasmic water to total water in shoot was 67.7%, and the apoplastic water to total water was 32.3%.

  • PDF