• Title/Summary/Keyword: 배면 콘크리트

Search Result 71, Processing Time 0.033 seconds

Evaluation on Rear Fracture Reduction and Crack Properties of Cement Composites with High-Velocity Projectile Impact by Fiber Types (섬유 종류에 따른 시멘트복합체의 고속 비상체 충격에 대한 배면파괴저감 및 균열특성 평가)

  • Han, Sang-Hyu;Kim, Gyu-Yong;Kim, Hong-Seop;Kim, Jung-Hyun;Nam, Jeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.157-167
    • /
    • 2015
  • Cement composites subjected to high-velocity projectile shows local failure and it can be suppressed by improvement of flexural toughness with reinforcement of fiber. Therefore, researches on impact resistance performance of cement composites are in progress and a number of types of fiber reinforcement are being developed. Since bonding properties of fiber with matrix, specific surface area and numbers of fiber are different by fiber reinforcement type, mechanical properties of fiber reinforced cement composites and improvement of impact resistance performance need to be considered. In this study, improvement of flexural toughness and failure reduction effect by impact of high-velocity projectile have been evaluated according to fiber type by mixing steel fiber, polyamide, nylon and polyethylene which are have different shape and mechanical properties. As results, flexural toughness was improved by redistribution of stress and crack prevention with bridge effect of reinforced fibers, and scabbing by high-velocity impact was suppressed. Since it is possible to decrease scabbing limit thickness from impact energy, thickness can be thinner when it is applied to protection. Scabbing of steel fiber reinforced cement composites was occurred and it was observed that desquamation of partial fragment was suppressed by adhesion between fiber and matrix. Scabbing by high-velocity impact of synthetic fiber reinforced cement composites was decreased by microcrack, impact wave neutralization and energy dispersion with a large number of fibers.

Analysis Wave Field on the Wave Pressure acting on the Frontal Slope of Rubble Mound Breakwater (경사식 방파제의 전사면 파압에 대한 파동장 해석)

  • 성상봉;전인식;이달수
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.98-102
    • /
    • 2003
  • 지금까지 실무에서는 경사식 방파제 적정 단면 결정시 피복재 산정 및 설계파에 대한 파력을 산정하여 상치콘크리트 구조물의 안정성을 검토하는 것이 전부였다 하지만 현장에서 발생하는 상황은 더 많은 변수들이 작용하는 것을 보여 주고 있다. 예를 들면 파에 의하여 발생하는 투과파 및 월파로 제체의 내부 및 배면 석재의 이탈이 발생하는 경우는 익히 보아 왔던 일이지만, 반대로 월파가 발생하지 않았는데도 불구하고 제체의 침하와 배면의 석재에 이탈 즉 세굴이 발생하는 경우도 있다. (중략)

  • PDF

A Study on Frequency and Time Domain Interpretation for Safety Evaluation of old Concrete Structure (노후된 콘크리트 구조물의 안전도 평가를 위한 초음파기법의 주파수 및 시간영역 해석에 관한 연구)

  • Suh Backsoo;Sohn Kwon-Ik
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.352-358
    • /
    • 2005
  • For non-destructive testing of concrete structures, time and frequency domain method were applied to detect cavity in underground model and pier model. To interpret the measured data, time domain method made use of tomography which was completed with first arrivaltime and inversion method. In this steady, frequency domain method using Fourier transform was tried. Maximum frequency in the frequency domain was analyzed to calculate location of cavity.

Evaluation of Protective Performance of Fiber Reinforced Concrete T-Wall (섬유보강 콘크리트 방호벽의 방호성능 향상 검토)

  • Lee, In-Cheol;Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Suk-Bong;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.465-473
    • /
    • 2013
  • Concrete is an outstanding material in terms of its impact and blast resistance performance. However, there a limitation of concrete is its risk of collapse due to the brittle failure and spalling. Increasing the thickness of members was used as a method to enhance the protective performance of concrete, despite the resulting inefficient space. To solve this problem, different types of fiber reinforced concrete were developed. Recently, another type of fiber reinforced concrete is also being developed and applied as a material that offers protection against impacts and blasts by increasing the flexural toughness of concrete. In this study, the test was conducted to evaluate the impact resistance performance of fiber reinforced concrete and mortar according to impact of high-velocity projectile. A concrete T-wall was also tested to evaluate its protective performance from fragment by 155mm-thick artillery shell. The test results revealed that improving flexural strength through fiber reinforcement inhibited cracks and spalling of rear, and spalling of front by high-velocity impact. As such, it is expected to improve the protective performance of the T-wall and reduce the thickness of the member.

An Experimental Study on Estimation of Size and Thickness of Cavitation(Void)s under Concrete Slabs and Tunnel Linings Using Law Frequency Type Radar(GPR) (저주파수 레이더(GPR)에 의한 콘크리트 상판 및 터널 라이닝 배면 공동의 크기 및 두께 추정에 관한 실험 연구)

  • Park, Seok-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.95-104
    • /
    • 2006
  • The presence of cavitations under pavements or behind tunnel linings of concrete is likely to result in collapse. One method of detecting such voids by non-destructive means is low frequency type radar(GPR). By the way, the size and thickness of small cavitation can't be detected by the present radar technology with low frequency and low resolution when it apply to civil structures like that. To overcome these problems and limitations, this study aims to develope and propose a new analysis method for estimating the depth, cross-sectional size and thickness of cavitations using low frequency radar. A new proposed method is based on the experiments that are carried out for analyzing the correlation between the measurement values(the amplitudes of radar return) of low frequency radar and various type of cavitations. In this process, the threshold value for radar image processing which aims to represent only cavitations to be fitted size can be obtained. As the results, it is clarified that a proposed method has a possibility of estimating cavitation depth, size and thickness with good accuracy in laboratory scale.

Evaluation on the Impact Resistant Performance of Fiber Reinforced Concrete by High-Velocity Projectile and Contacted Explosion (고속비상체 충돌 및 접촉폭발에 의한 섬유보강 콘크리트의 내충격 성능 평가)

  • Nam, Jeong-Soo;Kim, Hong-Seop;Lee, In-Cheol;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • In this study we experimentally evaluated an impact resistant performance of fiber reinforced concrete in the moment of explosion by high-velocity projectile with emulsion explosive. To assess the impact resistance, we conducted the impact test of high-velocity projectile which reaches an impact speed of 350 m/s and the experiment of contact exploding emulsion explosive. As a result, bending and tensile performance depending on type of PVA, PE fiber (polyvinyl alcohol fiber, polyethylene fiber) and steel fiber affects destruction of rear side in the form of spalling. Destroying the backside of the concrete compressive strength compared to suppress the bending and tensile performance is affected. In addition, the experiment shows that the destruction patterns of concrete specimen producted by high velocity impact and contact explosion are significantly similar. Therefore, it is possible to predict the destruction patterns of specimens in the situation of contact explosion by high-velocity projectile.

Non Destructive Technique for Steel Corrosion Detection Using Heat Induction and IR Thermography (열유도 장치와 적외선 열화상을 이용한 철근부식탐지 비파괴 평가기법)

  • Kwon, Seung Jun;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.40-48
    • /
    • 2012
  • Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the embedded steel from concrete surface, which is integrated with an IR camera. Concrete samples with different cover depths are prepared. Each sample is embedded with a single rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enable heat induction from one surface and IR imaging from the other simultaneously. The impressed current (IC) method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during the entire heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded sample shows higher rates of heating and cooling than those of the non-corroded sample. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.

Comparison of the GPR response of the cavity behind the tunnel lining before and after the backfill grouting (터널 콘크리트 라이닝 배면공동 뒷채움 전후의 GPR 반응)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Beom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.191-194
    • /
    • 2008
  • The cavity behind the tunnel lining, caused by overbrake, might be cause a severe instability during tunnel construction. So backfill grouting is essentially required. GPR(Ground penetrating Radar) is widely used to identify the position and size of the cavity and to verify the effect of the backfill grouting. In this study, GPR survey with 450 MHz antenna was implied to access the effect of the backfill grouting before and after the work to the crown part of ○○ tunnel in Seoul respectively. The result of GPR survey conducted before the backfill, was revealed that cavities behind the lining were existed in the areas of 8 spans. Finally, from the GPR survey implied after backfilling, it was turned out that backfill grouting was successfully carried out. Also, GPR survey was ascertained the better contact between lining and rock base at arrangement of bar span.

  • PDF

Experimental Study on Internal Temperature Change Induced by Heating Element Attached to Tunnel Lining Surface (터널 라이닝 표면에 부착된 발열체로 인한 내부 온도 변화의 실험적 연구)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.11
    • /
    • pp.35-40
    • /
    • 2017
  • The rearside of concrete lining of tunnels constructed in cold region might experience on freezing due to the low temperature. This causes damage of concrete lining resulting in adverse affect on the durability as well as integrity of tunnel structure by causing damage to the concrete lining. In order to prevent the rearside of tunnel lining from freeing, the temperature change inside the concrete lining was measured by attaching a heating element to the tunnel lining surface and generating heat for a certain period of time. A special freezing chamber was developed to conduct the experiments considering in-situ environment. The carbone nanotube (CNT) was used as a heating element in this study. The temperature distribution of the concrete lining was measured by applying the heat to the heating element. The effect of the outside temperature and heating duration were analyzed.

Estimation of Shape of Voids behind Concrete Tunnel Linings Using Radar of Three Dipole Antenna Type (3 다이폴 안테나 방식 레이더에 의한 콘크리트 터널 라이닝 배면 공동의 형상 추정)

  • Park Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.221-227
    • /
    • 2005
  • The presence of voids behind tunnel linings is very likely to result in settlement or structural collapse. One proposed method of detecting such voids by non-destructive method is radar. More than effectively judging the existence of voids behind tunnel linings, this study aims to develop the analysis algorithm of radar capable of estimation of the shape of specific voids. To acquire directional information and estimate the shape of three-dimensional voids, the radar of three-dipole antenna type is used. As a foundation to this ongoing research, an investigation of microwave polarization methods using three-dipole antenna carried out with various void orientations and void geometries. As a result, it is clarified that the response of four microwave polarization modes depends on void geometry and thus there is a possibility of identifying the geometry and orientation (the shape) of specific voids using radar of three-dipole antenna type.