• Title/Summary/Keyword: 배기 재순환

Search Result 239, Processing Time 0.025 seconds

Oxy Combustion Characteristics of Anthracite in a 100 kWth Circulating Fluidized Bed System (100 kWth 급 순환유동층 시스템에서 무연탄 순산소연소 특성 연구)

  • Moon, Ji-Hong;Jo, Sung-Ho;Mun, Tae-Young;Park, Sung-Jin;Kim, Jae-Young;Nguyen, Hoang Khoi;Lee, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.400-407
    • /
    • 2019
  • Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) technology has been paid attention to cope with the climate change and fuel supply problem. In addition, Oxy-CFBC technology as one of the methods for carbon dioxide capture is an eco-friendly that can reduce air pollutants, such as $SO_2$, NO and CO through a flue gas recirculation process. The newly developed $100kW_{th}$ pilot-scale Oxy-CFBC system used for this research has been continuously utilizing to investigate oxy-combustion characteristics for various fuels, coals and biomasses to verify the possibility of fuel diversification. The anthracite is known as a low reactivity fuel due to a lot of fixed carbon and ash. Therefore, this study aims not only to improve combustion efficiency of an anthracite, but also to capture carbon dioxide. As a result, compared to air-combustion of sub-bituminous coal, oxy-combustion of anthracite could improve 2% combustion efficiency and emissions of $SO_2$, CO and NO were reduced 15%, 60% and 99%, respectively. In addition, stable operating of Oxy-CFBC could capture above 94 vol.% $CO_2$.

An usefulness study on estimation and control method of EGR ratio using intake manifold pressure in an gasoline engine (가솔린엔진에서 흡기관 압력을 이용한 EGR율의 추정 및 제어 방법에 관한 유용성 연구)

  • Park, Hyeong-Seon;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.806-813
    • /
    • 2014
  • The EGR system being reburned the part of the exhaust gas through intake system indicates more favorable emission characteristics to reduce NOx in a gasoline engine, but the case of inappropriate exhaust gas quantity induced from engine is fallen engine power caused by unstable combustion. In this study, we examined a method to predict EGR ratio according to various engine operation condition based by intake manifold pressure and confirmed such a prediction data through an experimental method. And after having constituted feedback EGR control algorithm in a base with such a prediction data, we acquired qualitatively similar results by having compared data provided through an EGR feedback control experiment with the data which calculated quantity of residual gas for the engine operation condition. Therefore, the applied algorithm and the system for feedback EGR control showed feasibility applied to real electronic control EGR technology.

Study on Emission Characteristics in a Hydrogen-fueled Engine (수소기관에서의 배기가스에 관한 연구)

  • Cho, U.L.;Ghoi, G.H.;Bae, S.C.
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2002
  • The goal of this research is to understand the NOx emission in direct injected diesel engine with premixed hydrogen fuel. Hydrogen fuel was supplied into the test engine through the intake pipe. Amount of hydrogen-supplemented fuel was 70 % basis on heating value of the total input fuel. The effects of intake air temperature and exhaust gas recirculation(EGR) on NOx emission were studied. The intake air temperatures were varied from $23^{\circ}C$ to $0^{\circ}C$ by using liquid nitrogen. Also, the exhaust gas was recirculated to the intake manifold and the amount of exhaust gas was controlled by the valve. The major conclusions of this work include: ( i ) nitrogen concentrations in the intake pipe were increased by 30% and cylinder gas temperature was decreased by 24% as the intake air temperature were changed from $23^{\circ}C$ to $0^{\circ}C$; ( ii ) NOx emission per unit heating value of supplied fuel was decreased by 45% with same decrease of intake air temperature; and (iii) NOx emission was decreased by 77% with 30% of EGR ratio. Therefore, it may be concluded that EGR is effective method to lower NOx emission in hydrogen fueled engine.

A Study on the Simultaneous Reduction of PM and NOX Emissions in Diesel Engines (Diesel 기관(機關)의 미립자(微粒子)와 NOX 동시저감(同時低減)에 관한 연구(硏究))

  • Oh, Young Taig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1238-1246
    • /
    • 1998
  • Recently, the automobile industry has been faced with very serious problems related to the very restricted regulations of exhaust gas emissions. Therefore many researchers have been attracted to the development of oxygenated fuel for a solution to these problems. This paper deals with the effects of oxygenated fuel on exhaust emissions. An experimental study was conducted to investigate PM and $NO_X$ emission using dimethyl carbonate as an oxygenated fuel in a naturally aspirated DI diesel engine. With increased oxygenated fuel amounts. there were significant reductions in PM, HC and CO emissions mainly from depressed thermal cracking. while little increase in $NO_X$ was encountered concurrently. The effective reduction in PM with oxygenated fuel was maintained with the presence of $CO_2$. which suggested low $NO_X$ and PM obtained from the combination of using oxygenated fuel and cooled EGR. Thermal cracking and an analysis of the heat release rate were also studied in the experiment.

Effects of Cooled EGR on Exhaust Emission Characteristics of DI DME Engine (대체에너지 DME를 사용하는 직접분사엔진의 배기특성에 미치는 Cooled EGR의 영향)

  • Pyo, Youngduk;Nam, Sanghoon;Kim, Gangchul;Kim, Youngkil;Lee, Yongjae
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.2
    • /
    • pp.138-145
    • /
    • 2003
  • There are high expectations for DME(Dimethyl Ether) as a new alternative fuel for diesel engine. Compared with the conventional diesel engine, nearly zero soot emission and high thermal efficiency have been reported from DME fuelled CI engines. However, higher NOx emission is one of the disadvantages from DME Engines. In the present study, cooled EGR(Exhaust Gas Recirculation) was applied to DME engine modified from conventional Dl diesel engine, and effects of EGR were examined under various EGR temperature. Finally, it was concluded that the cooled EGR is an effective solution to reduce NOx emission from DME engine.

A Study on the CAI Combustion Characteristics and Stratified Combustion to Extend the Operating Region Using Direct Injection Gasoline Engine (직접분사식 가솔린 엔진을 이용한 CAI 연소특성 및 운전영역 확대를 위한 성층 연소 특성에 관한 연구)

  • Lee, Chang-Hee;Choi, Young-Jong;Lim, Kyoung-Bin;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.25-31
    • /
    • 2006
  • Controlled Auto Ignition(CAI) combustion has great potential in achieving significant increase in engine efficiency, while simultaneously reducing exhaust emissions. The process itself involves the auto ignition and subsequent simultaneous combustion of a premixed charge. In this study, NVO(Negative Valve Overlap) system was applied to a CAI engine in order to use residual gas. The fuel was injected directly to the cylinder under the high temperature condition resulting from heating the intake port to initiate CAI combustion. This paper introduced the valve timing strategy and experimental set-up. From this study, the effect of engine speed and valve timing on CAI combustion and exhaust emissions was clarified. In addition, stratified charge method was used to extend CAI operating region.

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part I. 저 NOx 연소특성)

  • Cho, Seo-Hee;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.8-16
    • /
    • 2019
  • One of the methods for low-pollution combustion, flue gas recirculation(FGR) is effective to reduce nitrogen oxides and it was applied in CH4/air premixed counterflow flames to identify the change of flame characteristics and NOx mechanisms. Considering that the mole fraction of the products varied depending on the strain rates, the major products: CO2, H2O, O2 and N2 were recirculated as a diluent to reflect the actual combustion system. With the application of the FGR technique, a turning point of maximum flame temperature under certain strain rate condition was found. Furthermore as the recirculation ratio increased, the tendency of NO was changed before and after the turning point and the analysis on thermal NO and Fenimore NO production was conducted.

A COMPUTATIONAL ANALYSIS FOR OUTLET SHAPE DESIGN TO SUPPRESS FLOW RECIRCULATION IN A ROTATING-DISK CVD REACTOR (회전원판형 CVD 장치의 유동 재순환을 억제하는 출구부 형상 설계를 위한 전산해석)

  • Park, J.J.;Kim, K.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.74-81
    • /
    • 2013
  • A numerical design analysis is conducted to search for an optimal shape of outlet in a rotating-disk CVD reactor. The goal is to suppress flow recirculation that has been found in a reactor having a sudden expansion of flow passage outside of the rotating disk. In order to streamline gas flow, the sidewall at which the flow in the Ekman layer is impinged, is tilted. The axisymmetric laminar flow and heat transfer in the reactor are simulated using the incompressible ideal gas model. For the conventional vertical sidewall, the flow recirculation forming in the corner region could be expanded into the interior to distort the upstream flow. The numerical results show that this unfavorable phenomenon inducing back flow could be dramatically suppressed by tilting the sidewall at a certain range of angle. The assessment of deviation in deposition rate based on the characteristic isotherm illustrates that the sidewall tilting may expand the domain of stable plug-like flow regime toward higher pressure. A physical interpretation is attempted to explain the mechanism to suppress flow recirculation.

Performance Evaluation on the Addition of Low-pressure Loop EGR in a Commercial Diesel Engine (상용 디젤엔진의 저압 순환 EGR 추가에 대한 성능 평가)

  • Wang, Tae-Joong;Lee, Jong-Yoon;Shim, Eui-Joon;Kim, Duk-Sang;Lee, Dong-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.105-110
    • /
    • 2011
  • Through this study, the performance evaluation on the addition of low-pressure loop EGR(Exhaust Gas Recirculation) in a 6.0 L commercial diesel engine was carried out using WAVE modeling and simulation. Since the key technology of advanced diesel engine combustion such as low-temperature combustion is to steadily supply high rates of EGR in a wide operating range, the current study could be effectively contribute to the design and development processes of up-to-date diesel engine systems as real-world reference data. The current simulation results show that the system in which low-pressure loop EGR is added shows almost 2.3 times increase in maximum EGR rate at 1000 rpm as well as almost 1.6 times increase at 2200 and 1600 rpm in comparison with an engine system employing high-pressure loop EGR only. Also, both turbocharger axis speed and charging pressure level did not deteriorate due to the addition of low-pressure loop EGR at 2200 and 1000 rpm, but they were fairly decreased at 1600 rpm.

A study on the exhaust gas recirculation in a MILD combustion furnace by using a Venturi nozzle (MILD 이용한 배기가스 재순환에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.413-419
    • /
    • 2013
  • The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of venturi nozzle geometrical parameters, nozzle position, nozzle gap between high pressure air nozzle and venturi nozzle, and with the change of high pressure nozzle inlet velocity. The entrainment flow rate for the case with the high pressure air nozzle attached at the exhaust gas wall has relatively small change with the change of nozzle gap. That for the case with the high pressure air nozzle exposed to the exhaust gas has monotonically increase with the change of nozzle gap. The flow rate ratio of entrainment flow rate has considerably increase tendency with relatively lower air inlet velocity, on the other hand, that with relatively higher air inlet velocity could be seen relatively small increase.