• Title/Summary/Keyword: 배기산소농도

Search Result 42, Processing Time 0.034 seconds

A Study on the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with the Change of Outlet Opening Position (배기가스 재순환 버너에서 연소가스 출구 위치에 따른 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.8-13
    • /
    • 2018
  • Nitrogen oxides (NOx) have recently been very influential in the generation of ultrafine dust, which is of great social interest in terms of improving the atmospheric environment. Nitrogen oxides are generated mainly by the reaction of nitrogen and oxygen in air in a combustion gas atmosphere of high temperature in a combustion apparatus such as thermal power generation. Recently, research has been conducted on the combustion that recirculates the exhaust gas to the cylindrical burner by using a piping using a Coanda nozzle. In this study, three types of burners were carried out through computational fluid analysis. Case 1 burner with the outlet of the combustion gas to the right, Case 2 burner with both sides as gas exit, Case 3 burner with left side gas exit. The pressure, flow, temperature, combustion reaction rate and distribution characteristics of nitrogen oxides were compared and analyzed. The combustion reaction occurred in Case 1 and Case 2 burner in the right direction with combustion gas recirculation inlet and Case 3 burner in the vicinity of mixed gas inlet. The temperature at the outlet was about $100^{\circ}C$ lower than that of the other burners as the Case 2 burner was exhausted to both sides. The NOx concentration of Case 1 burner at the exit was about 20 times larger than that of the other burners. From the present study, it could be seen that it is effective for the NOx reduction to exhaust the exhaust gas to both side gas exits or to exhaust the exhaust gas to the opposite direction of inlet of recirculation gas.

Heat Integration and Economic Analysis of Dry Flue Gas Recirculation in a 500 MWe Oxy-coal Circulating Fluidized-bed (CFB) Power Plant with Ultra-supercritical Steam Cycle (순환 유동층 보일러와 초초임계 증기 사이클을 이용한 500 MWe급 순산소 화력발전소의 건식 재순환 흐름의 열 교환 및 경제성 분석)

  • Kim, Semie;Lim, Young-Il
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.60-67
    • /
    • 2021
  • This study presented techno-economic analysis of a 500 MWe oxy-coal power plant with CO2 capture. The power plant included a circulating fluidized-bed (CFB), ultra-supercritical steam turbine, flue gas conditioning (FGC), air separation unit (ASU), and CO2 processing unit (CPU). The dry flue gas recirculation (FGR) was used to control the combustion temperature of CFB. One FGR heat exchanger, one heat exchanger for N2 stream exiting ASU, and a heat recovery from CPU compressor were considered to enhance heat efficiency. The decrease in the temperature difference (ΔT) of the FGR heat exchanger that means the increase in heat recovery from flue gas enhanced the electricity and exergy efficiencies. The annual cost including the FGR heat exchanger and FGC cooling water was minimized at ΔT = 10 ℃, where the electricity efficiency, total capital cost, total production cost, and return on investment were 39%, 1371 M$, 90 M$, and 7%/y, respectively.

Effects of Oxygen Concentration on the NOx Emission of Non-premixed Flame in Hot Exhaust Gas (고온 배기가스의 산소농도가 비예혼합화염의 NOx 발생에 미치는 영향)

  • Sohn, Hwa-Seung;Kim, Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.833-841
    • /
    • 2002
  • The present study examined the possibility of NOx reduction in the high temperature industrial furnaces, duct burner of gas turbine cogeneration and two-stage gas turbine combustor. The experimental study was carried out for the non-premixed flame of second stage combustor with the variations of oxygen concentration in the hot exhaust gas of first stage combustor. It also examined the flammability range, temperature and NOx, $CO_2$, $O_2$formation in the combustor with respect to oxygen concentration in which the fuel(natural gas) is supplying into the hot exhaust gas. The results show that the inner temperature of flame reaches 1,20$0^{\circ}C$ at EGR $O_2$23% and that 15ppm of NOx at EGR $O_2$15.5% increases up to 60ppm at EGR $O_2$23%. It is believed that Fenimore's prompt NOx mechanism is more influential on the NOx formation than Zeldovich's thermal NOx mechanism does.

화학적 인자에 의한 직업성 질환과 그 관리

  • Korea Industrial Health Association
    • 월간산업보건
    • /
    • s.42
    • /
    • pp.25-28
    • /
    • 1991
  • 산업현장에서는 대단히 많은 화학물질이 원료, 기타 용도로 이용되고 있으며, 근로자는 항상 폭로 내지는 중독의 위험을 받고 있다. 따라서 그 관리를 함에 있어서는 산업에서 쓰이는 화학물질의 종류와 양, 사용공정, 근로자의 폭로 상황에서부터 폐기에 이르기까지 모든것을 파악함과 동시에 그 작업환경관리, 작업관리 및 건강관리에 관해서 법규나 실제를 상세하게 알아둘 필요가 있다. 1. 관리는 기본적으로 법규에 의거하여 실시되는데, 여기에는 최소한의 규칙이 있으며, 실제 관리에 있어서는 임기응변의 최대한 노력이 필요하다. 2. 환경관리를 하는데는 기본적으로 허용농도가 이용되며, 국제적으로는 생물학적 한계치가 제창되어 응용되고 있다. 3. 법규 또는 독성에 의거하여 특정 화학물질, 기타 각종 호칭이 쓰이고 있으며 이러한 단어는 어떤내용을 지니고 있기 때문에 충분하게 정립해 둘 필요가 있다. 4. 화학물질에 의한 중독예는 해마다 감소되고 있는데 반하여 때로 대참사를 일으키는 수도 많아서 예전부터 화학물질에 의한 급성중독에서부터 만성장기폭로로 인한 영향에 대해 관심을 모으고 있다. 특히 직업성암에 대한 문제가 대두되고 있다. 5. 사고성 대량방출이나 산소 결핍증에는 구조자나 제3자에 대한 이차성 피해가 발생되기 쉬우므로 이 점에 주의를 요한다. 6. 일반환경으로의 방출로 인해 주민에게 미치는 영향도 주의해야 한다. 7. 근로자는 화학물질의 위험성에 대하여 잘 알지 못하거나 습관적인 취급으로 인해 주의가 산만해지기 때문에 충분한 보건교육이 있어야 한다. 8. 화학물질에 의한 건강장해예방의 기본은 발생억제, 격리, 제거(배기), 체내 침입방지, 장해예방(건강진단, 생활 등)이다.

  • PDF

Development of Control Program for Methane-hydrogen Fuel Conversion Based on Oxygen Concentration in Exhaust Gas (배기가스 내 산소 농도 기반 메탄-수소 연료 전환 제어 프로그램 개발)

  • EUNJU SHIN;YOUNG BAE KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Carbon neutrality policies have been strengthened to reduce emissions, and the importance of technology road maps has been emphasized. In the global industrial boiler market, carbon neutrality is implemented through fuel diversification of methane-hydrogen mixture gas. However, various problems such as flashback and flame unstability arise. There is a limit to implementing the actual system as it remains in the early stage. Therefore, it is necessary to secure the source technology of methane-hydrogen hybrid combustion system applicable to industrial fields. In this study, control program for methane-hydrogen fuel conversion was developed to expect various parameters. After determining the hydrogen mixing ratio and the input air flow, the fuel conversion control algorithm was constructed to get the parameters that achieve the target oxygen concentration in the exhaust gas. LabVIEW program was used to derive correlations among hydrogen mixing rate, oxygen concentration in exhaust gas, input amount of air and heating value.

Effects of Multi-stage Pilot Split Injection Strategy on Combustion and Emission Characteristics in a Single-Cylinder Diesel Engine (단기통 디젤엔진에서 다단 파일럿 분할 분사 전략이 연소 및 배기가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.692-698
    • /
    • 2020
  • This paper examines the effects of a multi-stage pilot split injection strategy on combustion and exhaust emission factors in a single-cylinder diesel engine. One analysis noted that in the single-injection condition, the maximum in-cylinder pressure and rate of heat release were highest. The pilot injection quantity was evenly divided, showing a tendency to decrease as the number of injections increased. In another injection condition, when the multi-stage pilot split injection strategy was applied, IMEP, engine torque, and combustion increased. The COVIMEP was greatest with the lowest combustion efficiency. The combustion ability was poor. In a single injection condition, the O2 concentration in the exhaust gas was the lowest and the CO2 was the highest. When the multi-stage split injection strategy was applied, the low temperature combustion process proceeded, and the oxidation rate of CO2 decreased while the emission level increased. In a single injection condition in which a locally rich mixture was formed, the HC emission level showed the highest results. A 55.6% reduction of NOx emission occurred under a three-stage pilot injection condition while conducting a multi-stage pilot split injection strategy.

Comparisons of Low Temperature Combustion Characteristics between Diesel and Biodiesel According to EGR control (EGR 제어를 통한 디젤 및 바이오디젤의 저온연소 특성 비교)

  • Lee, Yong-Gyu;Jang, Jae-Hoon;Lee, Sun-Youp;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • Due to the oxygen contents in biodiesel, application of the fuel to compression ignition engines has significant advantages in terms of lowering PM formation in the combustion chamber. In recent days, considerable studies have been performed to extend the low temperature combustion regime in diesel engines by applying biodiesel fuel. In this work, low temperature combustion characteristics of biodiesel blends in dilution controlled regime were investigated at a fixed engine operating condition in a single cylinder diesel engine, and the comparisons of engine performances and emission characteristics between biodiesel and conventional diesel fuel were carried out. Results show that low temperature combustion can be achieved at $O_2$ concentration of around 7~8% for both biodiesel and diesel fuels. Especially, by use of biodiesel, noticeable reduction (maximum 50% of smoke was observed at low and middle loads compared to conventional diesel fuel. In addition, THC(total hydrocarbon) and CO(Carbon monoxide) emissions decreased by substantial amounts for biodiesel fuel. Results also indicate that even though about 10% loss of engine power as well as 14% increase of fuel consumption rate was observed due to lower LHV(lower heating value) of biodiesel, thermal efficiencies for biodiesel fuel were slightly elevated because of power recovery phenomenon.

The Effect of addition of CuO to Fe2O3/ZrO2 Oxygen Carrier for Hydrogen Production by Chemical Looping (매체 순환식 수소제조공정에 적합한 Fe2O3/ZrO2 산소전달입자에 구리 산화물 첨가가 미치는 영향에 관한 연구)

  • Lee, Jun Kyu;Kim, Cho Gyun;Bae, Ki Kwang;Park, Chu Sik;Kang, Kyoung Soo;Jeong, Seong Uk;Kim, Young Ho;Joo, Jong Hoon;Cho, Won Chul
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.394-403
    • /
    • 2016
  • $H_2$ production by chemical looping is an efficient method to convert hydrocarbon fuel into hydrogen with the simultaneous capture of concentrated $CO_2$. This process involves the use of an iron based oxygen carrier that transfers pure oxygen from oxidizing gases to fuels by alternating reduction and oxidation (redox) reactions. The enhanced reactivities of copper oxide doped iron-based oxygen carrier were reported, however, the fundamental understandings on the interaction between $Fe_2O_3$ and CuO are still lacking. In this study, we studied the effect of dopant of CuO to $Fe_2O_3/ZrO_2$ particle on the morphological changes and the associated reactivity using various methods such as SEM/EDX, XRD, BET, TPR, XPS, and TGA. It was found that copper oxide acted as a chemical promoter that change chemical environment in the iron based oxygen carrier as well as a structural promoter which inhibit the agglomeration. The enhanced reduction reactivity was mainly ascribed to the increase in concentration of $Fe^{2+}$ on the surface, resulting in formation of charge imbalance and oxygen vacancies. The CuO doped $Fe_2O_3/ZrO_2$ particle also showed the improved reactivity in the steam oxidation compared to $Fe_2O_3/ZrO_2$ particle probably due to acting as a structural promoter inhibiting the agglomeration of iron species.

Method for Rapid Determination and Removal of Nitrogen Oxides in Flue Gases (Ⅰ). Rapid Determination on Nitrogen Oxides (배기가스중 질소산화물의 신속측정법과 그 제거에 관한 연구 (제1보). NO$_x$의 신속 정량법)

  • Yong Keun Lee;Tong Oh Seo;Kee Jung Paeng;Man Koo Kim;Kyu Ja Whang
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.52-60
    • /
    • 1985
  • Oxides of nitrogen (NO$_x$) in exhaust gases was determined by absorbing the gas in alkaline peroxide solution containing 0.03${\%}$ H2O2 and 0.1N NaOH. About 100 ppm of NO$_x$ was rapidly oxidized to NO$_2$ or N$_2$O$_5$ by H$_2$O$_2$ and required a contact time of 2 minutes with the absorbing solution for complete absorption. With vigorous shaking including air or oxygen gas, high concentration of NO$_x$ (>200 ppm) can be absorbed within 30 minutes. The remaining H$_2$O$_2$ affect the absorbance of color solution strongly. However, the excess H$_2$O$_2$ was completely decomposed by zinc powder 0.5g and the sample solution should be adjusted to the pH range 6.1∼6.6 before the reduction so that conversion of nitrate to nitrite ion is possible. The absorbed NO$_x$ is determined colorimetrically by the diazotization-coupling method with sulfonilamide and NEDA as the coupling agent. The sensitivity of the new method was 4.48 ${\times}$ 10$^4$ as molar absorptivity which was high sensitive compared with that obtained for the usual zinc reduction NEDA method with O$_3$. This method was far more rapid, brief and accurate than previously published O$_3$-NEDA method in Korean industrial standard.

  • PDF

Effect of Intake Pressure on Emissions and Performance in Low Temperature Combustion Operation of a Diesel Engine (디젤 저온연소 운전 영역에서 흡기압이 엔진 성능에 주는 영향)

  • Lee, Sun-Youp;Chang, Jae-Hoon;Lee, Yong-Gyu;Oh, Seung-Mook;Kim, Yong-Rae;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • One of the effective ways to reduce both $NO_x$ and PM at the same time in a diesel CI engine is to operate the engine in low temperature combustion (LTC) regimes. In general, two strategies are used to realize the LTC operation-dilution controlled LTC and late injection LTC - and in this study, the former approach was used. In the dilution controlled regime, LTC is achieved by supplying a large amount of EGR to the cylinder. The significant EGR gas increases the heat capacity of in-cylinder charge mixture while decreasing oxygen concentration of the charge, activating low temperature oxidation reaction and lowering PM and $NO_x$ emissions. However, use of high EGR levels also deteriorates combustion efficiency and engine power output. Therefore, it is widely considered to use increased intake pressure as a way to resolve this issue. In this study, the effects of intake pressure variations on performance and emission characteristics of a single cylinder diesel engine operated in LTC regimes were examined. LTC operation was achieved in less than 8% $O_2$ concentration and thus a simultaneous reduction of both PM and $NO_x$ emission was confirmed. As intake pressure increased, combustion efficiency was improved so that THC and CO emissions were decreased. A shift of the peak Soot location was also observed to lower $O_2$ concentration while $NO_x$ levels were kept nearly zero. In addition, an elevation of intake pressure enhanced engine power output as well as indicated thermal efficiency in LTC regimes. All these results suggested that LTC operation range can be extended and emissions can be further reduced by adjusting intake pressure.