• Title/Summary/Keyword: 배기가스 배출

Search Result 518, Processing Time 0.037 seconds

The injection petrol control system about CMAC neural networks (CMAC 신경회로망을 이용한 가솔린 분사 제어 시스템에 관한 연구)

  • Han, Ya-Jun;Tack, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.395-400
    • /
    • 2017
  • The paper discussed the air-to-fuel ratio control of automotive fuel-injection systems using the cerebellar model articulation controller(CMAC) neural network. Because of the internal combustion engines and fuel-injection's dynamics is extremely nonlinear, it leads to the discontinuous of the fuel-injection and the traditional method of control based on table look up has the question of control accuracy low. The advantages about CMAC neural network are distributed storage information, parallel processing information, self-organizing and self-educated function. The unique structure of CMAC neural network and the processing method lets it have extensive application. In addition, by analyzing the output characteristics of oxygen sensor, calculating the rate of fuel-injection to maintain the air-to-fuel ratio. The CMAC may easily compensate for time delay. Experimental results proved that the way is more good than traditional for petrol control and the CMAC fuel-injection controller can keep ideal mixing ratio (A/F) for engine at any working conditions. The performance of power and economy is evidently improved.

Study of the effects of injector cleaning on the exhaust gases in a common rail diesel engine (커먼레일 디젤엔진의 인젝터 클리닝이 배기가스에 미치는 영향에 관한 연구)

  • Cho, Hong-Hyun;Kim, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5980-5987
    • /
    • 2014
  • As a response to exhaust gas regulations, the electronic control system was applied to the diesel engine. The injected fuel mass and injection timing are accurately controlled using it, and the fuel efficiency and the engine output are significantly increased. In addition, the noise and the vibration of vehicles are decreased. To maintain the optimal performance of an electronic control diesel engine, it is important to control the fuel injection pressure accurately using the fuel pressure regulator. When the fuel pressure regulator is not worked normally, the failure phenomena (starting failure, staring delay, accelerated failure, engine mismatch et al.) occurred because the fuel pressure is not stabilized and controlled accurately. In this study, the effects on a fuel pressure, return fuel mass flow, and engine rotating speed according to the control rate of fuel pressure regulator were investigated to analyze the performance variation under the failure conditions of a fuel pressure regulator. As a result, when the control rate of a fuel pressure regulator decreased by 4%~6% compared to that of the standard condition, the variation of engine rotating speed and return fuel flow were increased greatly, and the abnormal condition occurred. In addition, it is possible to diagnose the failure of a fuel pressure regulator by monitoring these conditions.

Study for Zero Emission Vehicle Technology : Current Status and Recent Trends (무공해 자동차 기술의 현 상태와 발전방향)

  • Lee, Sunguk;Park, Byungjoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.377-384
    • /
    • 2019
  • To cope with severe global warming and environmental pollution problem regulations on automobile emissions and fuel efficiency has been tightened around the world. Therefore zero emission vehicles which do not use fossil fuels such as electric vehicles have attracted attention by government and both industry and academia at developed countries. In the market, electric vehicles are being selected from more and more consumers because of technological advances and policy support. Recently another zero emission vehicle, hydrogen fuel cell vehicle, is drawing attention and is expected to become deployed widely. This paper reviews technology, current status and global trends of zero emission vehicle. The economical analysis of zero emission vehicles are also presented.

A Convergence Study on the Effects of NH3/NOx Ratio and Catalyst Type on the NOx Reduction by Urea-SCR System of Diesel Engine (디젤엔진의 Urea-SCR 시스템에 의한 NH3/NOx 비율 및 촉매 방식이 NOx 저감에 미치는 영향에 관한 융합연구)

  • Yoon, Heung-Soo;Ryu, Yeon-Seung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.131-138
    • /
    • 2019
  • Diesel engines have important advantages over its gasoline counterpart including high thermal efficiency, high fuel economy and low emissions of CO, HC and $CO_2$. However, NOx reducing is more difficult on diesel engines because of the high $O_2$ concentration in the exhaust, marking general three way catalytic converter ineffective. Two method available technologies for continuous NOx reduction onboard diesel engines are Urea-SCR and LNT. The implementation of the Urea-SCR systems in design engines have made it possible for 2.5l and over engines to meet the tightened NOx emission standard of Euro-6. In this study, we investigate the characteristics of NOx reduction with respect to engine speed, load, types of catalyst and the $NH_3$/NOx ratio and present the conditions which maximize NOx reduction. Also we provide detailed experimental data on Urea-SCR which can be used for the preparation for standards beyond Euro-6.

Prediction of the Electric Vehicles Supply and Electricity Demand Using Growth Models (성장모형을 활용한 전기자동차 보급과 전력수요 예측)

  • Hyo Seung Han;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.132-144
    • /
    • 2023
  • European and American countries are actively promoting eco-friendly cars to reduce exhaust emissions from internal combustion engines. In Korea, the "4th Basic Plan for Eco-Friendly Vehicles" aims to promote eco-friendly cars by improving charging infrastructure, expanding incentive systems, and targeting the supply of 1.13 million eco-friendly cars by 2025. As rapid growth in the number of electric vehicles sold is expected, estimates are required of this growth and corresponding power demands. In this study, the authors used a growth model to predict future growth in the electric vehicle market and a previously derived electricity generation model to estimate corresponding power demands up to 2036, the target year of the "10th Basic Plan for Power Supply and Demand". The results obtained provide useful basic research data for future electric vehicle infrastructure planning.

Distribution of CO2 produced from fossil fuel by accelerator mass spectrometry: in Daejeon (가속기 질량분석법에 의한 화석연료 기원 이산화탄소의 농도 분포: 대전지역을 중심으로)

  • Park, Junghun;Hong, Wan;Park, Ji Youn;Sung, Ki Seok;Eum, Chul-Hun
    • Analytical Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.9-13
    • /
    • 2008
  • We have collected a batch of leaf samples at several main crossroads in Daejeon and a background site to obtain distribution of $CO_2$ (greenhouse gas) due to fossil fuel combustion. The leaf samples were treated with AAA method and ${\Delta}^{14}C$ values of them were measured using AMS. ${\Delta}^{14}C$ values of downtown sites were found to be lower by 27-102 ‰ than that of the background site, and the ratio of $CO_2$ originated from fossil fuel combustion in the atmosphere of Daejeon could be calculated from the differences of ${\Delta}^{14}C$ values. The average ${\Delta}^{14}C$ of the background site, around Kyeryong mountain, was measured to be $35{\pm}8$ ‰, and this value is lower than 66.3 ‰, which have been known as the backgdound values in USA.

Characteristic Study of LNG Combustion in the mixture of $O_2/CO_2$ ($O_2/CO_2$ 혼합조건에 따른 LNG 연소특성해석)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.647-653
    • /
    • 2007
  • The ultimate objective of this study is to develop a reliable oxygen-enriched combustion techniques especially for the case of the flue gas recycling in order to reduce the $CO_2$ emissions from practical industrial boilers. To this end a systematic numerical investigation has been performed, as a first step, for the resolution of the combusting flame characteristics of lab-scale LNG combustor. One of the important parameters considered in this study is the level of flue gas recycling calculated in oxygen enriched environment. As a summary of flame characteristics, for the condition of 100% pure $O_2$ as oxidizer without any flue gas recycling, the flame appears as long and thin laminar-like shape with relatively high flame temperature. The feature of high peak of flame temperature is explained by the absence of dilution and heat loss effects due to the presence of $N_2$ inert gas. The same reasoning is also applicable to the laminarized thin flame one, which is attributed to the decrease of the turbulent mixing. These results are physically acceptable and consistent and further generally in good agreement with experimental results appeared in open literature. As the level of $CO_2$ recycling increases in the mixture of $O_2/CO_2$, the peak flame temperature moves near the burner region due to the enhanced turbulent mixing by the increased amount of flow rate of oxidizer stream. However, as might be expected, the flue gas temperature decreases due to presence of $CO_2$ gas together with the inherent feature of large specific heat of this gas. If the recycling ratio more than 80%, gas temperatures drop so significantly that a steady combustion flame can no longer sustain within the furnace. However, combustion in the condition of 30% $O_2/70% $ $CO_2$ can produce similar gas temperature profiles to those of conventional combustion in air oxidizer. An indepth analyses have been made for the change of flame characteristics in the aspect of turbulent intensity and heat balance.

A Case Study on the Ventilation and Heat Environment in a Underground Limestone Mine with Rampway (Rampway 설치 석회석 광산내 환기 현황 및 열환경 분석 사례연구)

  • Kim, Doo-Young;Lee, Seung-Ho;Jeong, Kyu-Hong;Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.163-172
    • /
    • 2012
  • As more diesel engines have been employed in underground limestone mines with large cross section, underground space environment is worsened by diesel exhausts and heat flow. This paper aims for the ultimate goal to optimize the work place environment through assuring the optimal required ventilation rate based on the analysis of the airflow, diesel exhaust gas concentrations and the effects of mechanization and deepening working face on temperature and humidity. Due to the insufficient capacity of the main exhaust fan and poor airway management, stagnant airflows were observed at various locations, while the flow direction was reversed instantly with passing diesel equipment and the flow reversal was also made by the seasonal variation of the outside surface weather. During the loading operation, CO concentration measurements were found to be frequently higher than the threshold limit of 50 ppm, and most of the $NO_2$ measurements during drilling and loading operations shows even more serious levels surpassing the permissible limit of 3 ppm. The actual ventilation quantity was considerably less than the required quantity estimated by the mine health and safety law, and this shortage problem was less serious in colder winter showing more effectiveness of the natural ventilation.

Evaluation of EGR applicability for NOx reduction in lean-burn LPG direct injection engine (초희박 LPG 직접분사식 엔진에서 질소산화물 저감을 위한 배기재순환 적용성 평가)

  • Park, Cheolwoong;Cho, Seehyeon;Kim, Taeyoung;Cho, Gyubaek;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.22-28
    • /
    • 2015
  • In order to keep the competitiveness of LPG fuel for transportation fuel, the difference in fuel consumption with gasoline and cost for an aftertreatment system should be reduced with continuous development of technology for LPG engine. In the present study, spray-guided type direct injection combustion system, whose configuration is composed of direct injector in the vicinity of spark plug, was employed to realize stable lean combustion. A certain level of nitrogen oxides($NO_x$) emits due to a locally rich mixture regions in the stratified mixture. With the application of EGR system for the reduction of $NO_x$, 15% of $NO_x$ reduction was achieved whereas fuel consumption and hydrocarbon emission increased. By the application of EGR, the combustion speed reduced especially appeared at initial flame development period and peak heat release rates and increasing rates for heat release rate decreased as EGR rate increased due to the dilution effect of intake air.

Extension of Low Temperature Combustion Regime by Turbocharging Using Diesel and Biodiesel Fuels (과급에 의한 디젤 및 바이오디젤의 저온연소 운전영역 확장에 관한 연구)

  • Jang, Jae-Hoon;Oh, Seung-Mook;Lee, Yong-Gyu;Lee, Sun-Youp
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1065-1072
    • /
    • 2012
  • Due to its oxygen (O) content, biodiesel (BD) is advantageous in that it lowers PM emissions in CI engines. Therefore, BD is considered one of the best candidates for low temperature combustion (LTC) operation because its use can extend the regime for simultaneous reduction of PM and $NO_x$. Thus, in this study, LTC operation was realized using BD and diesel with a 5~7% $O_2$ fraction. Engine test results show that the use of BD increased the efficiency and reduced emissions such as PM, THC, and CO; furthermore, IMEP reduced by 10~12% owing to the lower LHV of the fuel. In particular, smoke was suppressed by up to 90% because O atoms in the BD enhanced the soot oxidation reaction. To compensate the IMEP loss, turbocharging (TC) was then tested, and the results showed that the power output increased and PM was reduced further. Moreover, TC in BD engine operation allowed a similar level of reduction in both $NO_x$ and PM at 11~12% $O_2$ fraction, suggesting that there is a potential to widen the operating range by the combination of TC and BD.