• Title/Summary/Keyword: 배근상세도

Search Result 83, Processing Time 0.026 seconds

Seismic Performance of Special Shear Wall Structural System with Effectively Reduced Reinforcement Detail (완화된 단부 배근상세를 갖는 특수전단벽 구조시스템의 내진성능평가)

  • Chun, Young-Soo;Lee, Ki-Hak;Lee, Hyo-Won;Park, Young-Eun;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.271-281
    • /
    • 2013
  • The current seismic design code prescribes that a structural wall should be designed as a special shear wall when the building height is more than 60 m and its seismic design category is classified as D. However, the use of a special shear wall has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of a special shear wall and a special shear wall with relaxed reinforcement detail was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the reinforcement details of the special boundary element. Next, the seismic performances of a special shear wall structural system and that of a special shear wall structural system with relaxed reinforcement detail was evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of the shear wall with relaxed reinforcement detail was almost similar to the performance of a special shear wall and has the performance which requested from standard. The results of the seismic evaluation showed that all special shear walls with relaxed reinforcement detail are satisfied with the design code and seismic performance.

Seismic Retrofit of RC Exterior Beam-Column Joints Strengthened with CFRP (CFRP를 이용한 비내진 철근콘크리트 외부 보-기둥 접합부의 내진 보강)

  • Kim, Min;Lee, Ki-Hak;Lee, Jae-Hong;Woo, Sung-Woo;Lee, Jung-Weon
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.729-736
    • /
    • 2006
  • It has been shown that many Reinforced Concrete(RC) structures designed without seismic details have experienced brittle shear failures in the beam-column joint area and resulted in large permanent deformations and structural collapse. In this study, experimental investigations into the performance of exterior reinforced concrete beam-column joints strengthened with the carbon fiber-reinforced polymer(CFRP) under cyclic loading were presented. The CFRP has been applied by choosing different combinations and locations to determine the effective way to improve structural performances of joints. Eight beam-column joints were tested to investigate behaviors of each specimen under cyclic load and to compare performances of seismic retrofit. According to the experimental study, the retrofit strengthened with the CFRP provides significant improvements of flexural capacity and ductility of beam-column joints originally built without seismic details.

Effect of Reinforcement details on the Seismic Performance of Precast Strain-Hardening Cementitious Composite(SHCC) Infill Walls (보강상세에 따른 프리캐스트 변형경화형 시멘트 복합체 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Song, Seon-Hwa;Yun, Yeo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.209-216
    • /
    • 2009
  • Flexible frames on their own offer little resistance to lateral forces, resulting often in large deflections and rotations at the joints. On the other hand, walls subjected to lateral loads fail mainly in shear at relatively small displacements. Therefore, when the nonductile frames and wall act together, the combined action of the composite system differs significantly from that of the frame or wall alone. The objective of the study is to evaluate seismic response of infill walls with notched midsection. Reinforcement detail of wall was main variable in the experiment. Also SHCC was used in order to prevent damage concentration into notched midsection of walls. Test results, SHCC infill walls show the multiple crack patterns as expected. However, PIW-ND specimen exhibits less story drift, stiffness and energy dissipation capacity than those of PIW-NC specimen.

A Study on the Improvement of Erection Bar Detailing in Domestic Building Construction (국내 건축물 조립용 철근 배근현황 및 개선방안에 관한 연구)

  • Jung, Hyeon-Ok;Cho, Hun-Hee;Park, U-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.39-46
    • /
    • 2009
  • The erection bar is defined as the assistant bar used to fix the position of the reinforcing steel as the reinforcing steel is placed on site. As the erection bar do not bear the structural load and is not showed in the structural drawings, it is not managed importantly. But as chair bars in mat footing is used in large quantities to support the upper main bars, the detailing standards need to be suggested. and some erection bar is placed by experience of the fabricator and placer. Therefore, in this study, a survey about the erection bars was conducted to the reinforcement detailer, the fabricator and placer of domestic construction industry. 11 placing drawings is analyzed to find out the problems of detailing and the quantities of the erection bars. According to the analysis of the survey, the erection bar details in placing drawings were not standardized, and some erection bars are omitted in placing drawings. The improvement in the erection bar detailing was sought by analyzing the results of the survey.

Cyclic Behavior of Slender Reinforced Concrete Coupling Beams with Bundled Diagonal Reinforcement (묶음 대각철근을 갖는 세장한 철근콘크리트 연결보의 이력거동)

  • Han, Sang-Whan;Yoo, Kyoung-Hwan;Lee, Ki-Hak;Shin, Myoung-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.661-668
    • /
    • 2015
  • Coupled shear walls are effective lateral force resisting system in which coupling beams link individual walls. For improving the energy dissipation capacity of coupling beams, diagonal reinforcement details were developed. However, it is difficult to construct diagonal reinforced coupling beams due to the congestion of reinforcement in the beam. For resolving the problem, this study developed precast coupling beams with bundled diagonal reinforcement. To reduce the reinforcement congestion, bundled diagonal reinforcement were placed in the coupling beam. To evaluate the cyclic performance of coupling beams with bundled diagonal reinforcement, experimental test were conducted. For this purpose, two slender specimens with an aspect ratio of 3.5 were made and tested. It was observed that the cyclic performance of the coupling beam with bundled diagonal reinforcement was similar with that of the coupling beam with normal diagonal reinforcement placed according to design code to ACI 318-11.

Application of 상Strut-and-Tie상 Model for the Detailing of Beam-Column Joints (보-기둥 접합부의 배근상세를 위한 Strut-and-Tie Model)

  • 강원호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.53-58
    • /
    • 1994
  • Beam-column joints of the skeleton structure can be classified as geometrical D-region, where the assumption of Bernoulli is not applicable. For the detailing of D-region in concrete structure, "Strut-and-Tie' Model is a very powerful tool, which has been widely used by practical engineers. This paper shows how the methodology of Strut-and-Tie Model can be applied for the various cases of beam-column joints. We can find this mechanical model does not give only an appropriate answer to the given problem but also a better insight to the structral behavior of beam-column joints.

  • PDF

Detailing in RC Pier Coping According to the Design Methods (설계방법에 따른 RC 교각 코핑부의 배근상세)

  • Park Kyu Yul;Lee Seung Hun;Eom Jang Sub;Jin Chi Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.217-220
    • /
    • 2005
  • The designer has difficulty due to inadequacy of provisions in the domestic design code and lack of understanding for behavior of D-region. The reinforced concrete pier coping consists of various failure mechanisms as the crushing or splitting from compression concrete, and shearing failure under the loading plate. However, predicting those failure mechanisms is very difficult. In this study, reinforced concrete pier coping is analyzed and designed by using strut-tie model. Adequacy for the application of strut-tie model is verified by comparison with the way used in current design practice. The results show that strut-tie model can be a rational and an economical design than current conventional design methods.

  • PDF

Shear Behavior Characteristics of Joint according to Strain-Hardening Cement Composite Types (시멘트 복합체 종류에 따른 접합부의 전단거동특성)

  • Nam, Sang-Hyun;Jeon, Esther;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.27-28
    • /
    • 2010
  • This paper discusses behavior of Joint with strain hardening cement composites(SHCC). The main variables considered include the type of cement composites(mortar, SHCC with hybrid fiber) and shape and space of reinforcement. As the result of the tests, for the same reinforcement detail, SHCC specimen showed better overall behavior(stress, ductile, multiple cracking) than mortar specimen.

  • PDF

Simplified Evaluation of Long-Term Deflection of Reinforced Concrete Flexural Members (철근콘크리트 휨재의 장기처짐 예측을 위한 간략 평가)

  • Chang, Dong-Woon;Kang, Jee-Hoon;Chae, Seung-Yoon;Kim, Jae-Yo;Eom, Tae-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.6-9
    • /
    • 2011
  • 지속하중을 받는 철근콘크리트 휨부재는 크리프, 건조수축 등 장기거동에 의하여 처짐이 증가된다. ACI318-08, KCI 2007 등 현행 구조설계기준의 장기처짐 평가방법은 인장 및 압축 철근비, 배근상세, 재료 강도 등 설계변수에 따른 장기처짐의 변화를 합리적으로 고려하기 어렵다. 본 연구에서는 장기거동에 의한 힘의 평형조건과 변형률 적합조건을 사용하여 크리프와 건조수축에 의한 철근콘크리트 균열단면의 장기변형을 예측하는 간략 평가식을 제안하였다. 장기변형 평가 시 콘크리트와 철근은 선형탄성거동을 가정하였고, 시간에 따른 콘크리트와 철근 사이의 응력재분배를 고려하기 위하여 재령보정탄성계수법을 적용하였다. 변수연구 및 검증 결과, 철근콘크리트 휨재의 장기처짐은 설계변수의 영향으로 달라질 수 있고, 제안된 방법은 이러한 장기처짐의 변화를 비교적 정확하게 예측하는 것으로 나타났다.

  • PDF

Evaluation on Seismic Performance of the Columns in Concrete Moment Frames (모멘트 골조 기둥의 구조 성능평가)

  • 한상환;박성일
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.513-520
    • /
    • 2002
  • This study is to evaluate the structural performance of columns in concrete moment frame. For this purpose the results of previous experimental studies were collected and compared. The experimental variables considered in this study are existance of lap splice within the possible plastic hinge region during an earthquake, ratio of longitudinal reinforcement axial load and the transverse reinforcement ratio. The strength, deformation, ductility capacity and the length of plastic hinge are compared in this study.