• Title/Summary/Keyword: 배관 깊이

Search Result 68, Processing Time 0.024 seconds

Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment (소켓 용접부 결함 검사용 초음파 자동 검사 장비 개발)

  • Lee, Jeong-Ki;Park, Moon-Ho;Park, Ki-Sung;Lee, Jae-Ho;Lim, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.275-281
    • /
    • 2004
  • Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants.

J-Integral Estimate for Circumferential Cracked Pipes Under Primary and Secondary Stress in R6, RCC-MR A16 (원주방향 균열 배관에 대한 R6, RCC-MR A16 코드에 의한 1,2 차 복합 하중하에서 J-적분 비교)

  • Nam, Hyun Suk;Oh, Chang Young;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.631-640
    • /
    • 2013
  • This paper provides a comparison of the J-integral estimation method under combined primary and secondary stress in the R6, RCC-MR A16 code. The comparisons of each code are based on finite element analysis using ABAQUS with regard to the crack shape, crack depth, and magnitude of secondary load. The estimate of the R6 code is conservative near $L_r=1$, and that of the RCC-MR A16 code is conservative near $L_r=0$. As a result, this paper proposes a modified method of J-integral estimation in the R6, RCC_MR A16 code. The J-integral using the modified method corresponds to the finite element analysis result.

A Study on the Selection of Target Ship for the Protection of Submarine Power Cable (해저 동력케이블 보호를 위한 대상 선박 선정에 관한 연구)

  • Lee, Yun-sok;Kim, Seungyeon;Yu, Yungung;Yun, Gwi-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.662-669
    • /
    • 2018
  • Recently, the installation of submarine power cables is under consideration due to the increase of electric power usage and the development of the offshore wind farm in island areas, including Jeju. In order to protect power cables installed on the seabed, it is necessary to calculate the burial depth based on the characteristics of anchoring, dragging and fishing, etc. However, there is no design standard related to the size of target ships to protect the cables in Korea. In this study, we analyzed the design standards for the protection of domestic submarine pipelines similar to submarine cables, and developed the risk matrix based on the classification by emergency anchoring considering the installation environment, then designed the size of target ships according to the cumulative function scale by ship size sailing through the sea concerned. Also, we linked marine accident conditions, such as anchoring, dragging, etc. and the environmental conditions such as current, sea-area depth of installation etc. to the criteria of the protection of submarine cable, and examined the size of specific target ships by dividing the operating environment of ships into harbor, coastal and short sea. To confirm the adequacy and availability of the size of target ships, we verified this result by applying to No. 3 submarine power cables, which is to be installed in the section from Wando to Jeju Island. This result is expected to influence in the development of a protection system for submarine cables and pipelines as well as the selection of anchor weight according to the determination of burial depth.

Stress and Strain Distribution of Gas Pipe According to Buried Depth (매설심도에 따른 가스 배관의 응력 변형 특성)

  • Cho, Jinwoo;Choi, Bonghyuck;Cho, Wonbeom;Kim, Jinman;Hong, Seongkyeong;Jeong, Sekyoung;Kim, Joonho
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.51-57
    • /
    • 2013
  • Recently, improvement of materials and technologies for the manufacturing of gas pipe has it possible to reduce the buried depth. Compared to the criteria from advanced countries, Korea has conservative criteria for the buried depth of pipeline(about 50cm deeper). Therefore, this study investigated the effect of various buried depth(0.8m, 1.0m, 1.2m) on the stress and strain distribution of gas pipe. Numerical analysis and field tests were carried out with API 5L steel gas pipes. From the results, it can be suggested that the change of buried depth would not significantly affect the stress and strain distribution of gas pipe.

Defect depth estimation using magnetic flux leakage measurement for in-line inspection of pipelines (자기 누설 신호의 측정을 이용한 배관의 결함 깊이 추정)

  • Moon, Jae-Kyoung;Lee, Seung-Hyun;Lee, In-Won;Park, Gwan-Soo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.328-333
    • /
    • 2006
  • Magnetic Flux Leakage (MFL) methods are widely employed for the nondestructive evaluation (NDE) of gas pipelines. In the application of MFL pipeline inspection technology, corrosion anomalies are detected and identified via their leakage filed due to changes in wall thickness. The gas industry is keenly interested in automating the interpretation process, because a large amount of data to be analyzed is generated for in-line inspection. This paper presents a novel approach to the tasks of data segmentation, feature extraction and depth estimation from gas pipelines. Also, we will show that the proposed method successfully identifying artificial defects.

Inconel 617의 결정립 미세화에 의한 내부산화거동이 크렉 전파에 미치는 영향

  • Im, Jeong-Hun;Jo, Tae-Seon;Kim, Dae-Gyeong;Kim, Yeong-Do
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.50.2-50.2
    • /
    • 2010
  • 니켈기 초내열합금 Inconel 617은 수소생산용 초고온 가스 냉각로의 열 교환기와 고온 가스관 등의 고온 배관용 후보재료로써, Cr, Mo, 와 W등의 첨가물이 함유된 고용 강화된 합금으로, 우수한 고온 강도, 크립 저항성, 내부식성 및 내산화성을 가지고 있는 것으로 알려져 있다. 본 연구에서는 결정립 미세화가 고온열화에 의해 입계를 따라 형성되는 internal oxide에 미치는 영향에 대해 평가하였고, 이러한 internal oxide가 인장응력 하에서 크렉 형성 및 전파에 미치는 영향을 평가하기 위하여 3-point bending test를 수행하였다. 미세한 결정립을 가지는 Inconel 617은 냉간압연 후 재결정을 통해 확보하였으며, as-received(AR)과 grain-refined(GR) Inconel 617은 $950^{\circ}C$에서 2000시간 동안 He분위기 하에서 열화시험을 수행하였다. AR과 GR에 형성된 internal oxide은 깊이와 분포 등의 뚜렷한 차이를 보였으며, 이러한 차이로 인해 인장응력 하에서 크렉 전파의 큰 차이를 나타내었다.

  • PDF

Design and Performance Evaluation of Shear Wave Phased Array Ultrasonic Transducer (횡파 위상배열 초음파 탐촉자 설계 및 성능 평가)

  • Yoon, Byung-Sik;Lee, Hee-Jong;Braconnier, Dominique
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.185-191
    • /
    • 2012
  • Typically, a wedge is involved to generate effectively high inspection angle in pipe weld inspection using phased array ultrasonic technique. But the usage of this wedge for weld or access limited area can cause coverage limitation for the examination volume because of the wedge front length. Therefore, the shear wave phased array probe which can generate high inspection angle without wedge is essentially necessary. In this paper, the shear wave phased array ultrasonic probe which can generate high inspection angle designed by modeling and manufactured from the modelling result. And this shear wave probe tested whether it can detect and sizing for EDM test block that contains various depth. As results, the experimental results show that the designed shear wave phased array probe can detect and size with reliable accuracy. Therefore if this phased array probe apply in field inspection, it is expected that it show more reliable inspection result for plant structure having access limitation.

Evaluation of Surface Temperature Variation and Heat Exchange Rate of Concrete Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 콘크리트 도로 포장체의 표면 온도 변화와 방열량 평가)

  • Byonghu Sohn;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have been well established and documented to provide road safety in winter season over the past two decades. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their performance. The aim of this study is to investigate the thermal performance of the concrete HHP systems, including surface temperature variations of experimental pavements in winter season. For preliminary study a small-scale experimental system was installed to evaluate the heat transfer characteristics of the concrete HHP in the test field. The system consists of 3 concrete slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In these slabs, circulating water piping was embedded with different pipe depths of 0.08 m (Case A), 0.12 m (Case B), and 0.20 m (Case C) and same horizontal space of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. Overall, the surface temperature of the concrete HHPs remained above 3℃ in all experimental conditions applied in this study. The results of the surface temperature measurement with respect to the pipe depth showed that Case B was the highest among the three cases. However, the closer the circulating water pipe was to the pavement surface, the greater the heat exchange rate. This results is considered that the heat is continuously accumulated inside the pavements and then the temperature inside the pavements increases, while the amount of heat dissipation decreases as the temperature difference between the inlet and outlet of circulating water decreases. In this preliminary test the applicability of the concrete HHP on road deicing was confirmed. Finally, the results can be used as a basis for studying the effects of various variables on road pavements through numerical analysis and for conducting large-scale empirical experiments.

Effect of Similar Metal Weld & Preemptive Weld Overlay On Residual Stress of Repair Weldment In Surge Nozzle (고리 원전 밀림관 노즐의 동종용접과 예방용접 Overlay가 보수용접 잔류응력에 미치는 영향)

  • Oh, Chang-Young;Song, Tae-Kwang;Shim, Kwang-Bo;Kim, Ji-Soo;Kim, Yun-Jae;Lee, Kyung-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.557-564
    • /
    • 2009
  • Welding residual stress is occurred after welding process. Tensile residual stress is one factor of PWSCC. Repair welding usually happened during the manufacturing welding process. Repair welds cause strong tensile residual stress. In PWR, Repair weldments made by Alloy 82/182 is susceptible to PWSCC caused by tensile stress, material and environment. Therefore, mitigation of welding residual stress in weldments is important for reliable operating. PWOL is one of the methods for mitigation and verified for over twenty years. In this paper, residual stress distribution of repaired weldments and the effect of PWOL on mitigation is examined for surge nozzle.

Development and Validation of Cryopanel Cooling System Using Liquid Helium for a Satellite Test (액체헬륨을 이용한 위성시험용 극저온패널 냉각시스템 개발 및 검증)

  • Cho, Hyok-Jin;Moon, Guee-Won;Seo, Hee-Jun;Lee, Sang-Hoon;Hong, Seok-Jong;Choi, Seok-Weon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.213-218
    • /
    • 2010
  • A cooling system utilizing liquid helium to chill the cryopanel (800 mm $\times$ 700 mm dimensions) down to 4.2 K was designed, implemented, and tested to verify the role of the cryopanel as a heat sink for the payload of a spacecraft inside the large thermal vacuum chamber (effective dimensions : 8 m ($\Phi$) $\times$ 10 m (L)) of KARI (Korea Aerospace Research Institute). Two LHe (Liquid Helium) Dewars, one for the main supply and the other for refilling, were used to supply liquid helium or cold helium gas into this cryopanel, and flow control for the target temperature of the cryopanel within requirements was done through fine adjustment of the pressure inside the LHe Dewars. The return helium gas from the cryopanel was reused as a thermal barrier to minimize the heat influx on the core liquid helium supply pipe. The test verified a cooling time of around three hours from the ambient temperature to 40 K (combined standard uncertainty of 194 mK), the capacity for maintaining the cryopanel at intermediate temperatures, and a 1 K uniformity over the entire cryopanel surface at around 40 K with 20 W cooling power.