• Title/Summary/Keyword: 배관설치

Search Result 297, Processing Time 0.027 seconds

A Study on the Comparison of Aspirating Smoke Detector and General Smoke Detector Detection Time according to the Fire Speed and Location of Logistics Warehouse through FDS (화재시뮬레이션을 통한 물류창고 화재 속도와 위치에 따른 공기흡입형 감지기와 일반 연기 감지기 감지시간 비교에 관한 연구)

  • SangBum Lee;MinSeok Kim;SeHong Min
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.608-623
    • /
    • 2023
  • Purpose: Recently, the number of logistics warehouses has been on the rise. In addition, as the number of such logistics warehouses increases, number of fire accidents also increases every year, increasing the importance of preventing fires in large logistics warehouses. Method: investigated aspirating smoke detectors that are emerging as adaptive fire detectors in logistics warehouses. Then, through fire simulation (FDS), logistics warehouse modeling was conducted to compare and analyze the detection speed of general smoke detectors and aspirating smoke detectors according to four stages of fire growth and three locations of fire in the logistics warehouse. Result: Growth speed in Slow-class fires and Mediumclass fires, the detection speed of aspirating smoke detectors was faster regardless of the location of the fire. However, in Fast-class fires and Ultra-Fast-class fires, it was confirmed that the detection speed of general smoke detectors was faster depending on the location of the fire. Conclusion: It was confirmed that the detection performance of the aspirating smoke detector decreased as the fire growth speed increased and the location of the fire occurred further than the receiver of the aspirating smoke detector. Therefore, even if an aspirating smoke detector is installed in a warehouse that stores combustibles with high fire growth rates, it is judged that an additional smoke detector is attached far away from the receiver of the general smoke detector to increase fire safety.

An Economic Analysis of the Effluent Heat Supply from Thermal Power Plant to the Farm Facility House (화력발전소 온배수열 활용 시설하우스 열공급 모형 경제성분석 연구)

  • Um, Byung Hwan;Ahn, Cha Su
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.6-13
    • /
    • 2018
  • Utilizing the heat of cooling water discharge of coal-fired power plant, pipeline investment costs for businesses that supply heat to agricultural facilities near power plants increase in proportion to installation distance. On one hand, the distance from the power plant is a factor that brings difficulties to secure economic efficiency. On the other, if the installation distance is short, there is a problem of securing the heating demands, facility houses, which causes economical efficiency to suffer. In this study, the economic efficiency of 1km length of standard heat pipeline was evaluated. The sensitivity of the heat pipe to the new length variation was analyzed at the level of government subsidy, amount of heating demand and the incremental rate of pipeline with additional government subsidy. As a result of the analysis, it was estimated that NPV 131 million won and IRR 15.73%. The sensitivity analysis showed that NPV was negative when the length of heat pipe facility exceeded 2.6 km. If the government supports 50% of the initial investment, the efficiency is secured within the estimated length of 5.3 km, and if it supports 80%, the length increases within 11.4 km. If the heat demand is reduced to less than 62% at the new length of the standard heat pipe, it is expected economic efficiency is not obtained. If the ratio of government subsidies to initial investment increases, the elasticity of the new bloc will increase, and the fixed investment, which is the cost of capital investment for one unit of heating demand, will decrease. This would result in a reduction in the cost of production per unit, and it would be possible to supply heat at a cheaper price level to the facility farming. Government subsidies will result in the increased economic availability of hot plumbing facilities and additional efficiencies due to increased demand. The greater government subsidies to initial investment, the less farms cost due to the decrease in the price per unit. The results of the study are significant in terms of the economic evaluation of the effectiveness of the government subsidy for the thermal power plant heat utilization project. The implication can be applied to any related pilot to come.

Early Responses of Planted Quercus serrata Seedlings and Understory Vegetation to Artificial Gap Treatments in Black Locust Plantation (아까시나무림에서 인공 숲틈 처리에 대한 졸참나무 식재목 및 하층식생의 초기 반응)

  • Cho, Yong-Chan;Kim, Jun-Soo;Lee, Jung-Hyo;Lee, Heon-Ho;Ma, Ho-Seob;Lee, Chang-Seok;Cho, Hyun-Je;Bae, Kwan-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.94-105
    • /
    • 2009
  • Black locust (Robinia pseudoacacia) stand is representative lowland exotic plantation with low ecological quality and arrested succession in South Korea. To facilitate succession and restore natural vegetation, small canopy gaps (${\sim}57m^2$), which can modify minimally structural variables and reduce restoration related disturbances on stand, was established in the black locust stand, and oak (Quercus serrata) seedlings were introduced in the gap. Two types of varying levels were introduced for gap creation; cutting (C) and girdling (G) on canopies. Understory removal (CU and GU) treatment was applied as subtypes of structural modification. Growth (diameter, height and leaf area) of target species and responses (species composition, diversity and coverage) of understory community were monitored during study years (2007~2008). Canopy openness was different significantly among treatments but not for light availability. Based on the result of logistic regression, growth of height and leaf area of seedlings were significant variables on seedling survival. Height and leaf area of seedlings were increased during study years, although radial growth was reduced. During study years, there were no significant differences in species composition and diversity, and total coverage increased about 20%. Increase of resources by gap creation and understory removal likely affect growth of target species. Small gap creation was effective to reduce understory responses in composition and diverstiy. Synthesized, growth of target species and responses of understory community to small canopy gap creation exhibited, in short term, possibility of utilization in alternative forest restoration and management option. Long-term monitoring is necessary to certificate effect of artificial gap creation on forest restoration.

Study of Minimum Passage Size of Subterranean Termites (Reticulitermes speratus kyushuensis) (국내 흰개미(Reticulitermes speratus kyushuensis)의 최소 통과 직경 연구)

  • Kim, Sihyun;Lee, Sangbin;Lim, Ikgyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.188-197
    • /
    • 2020
  • Termites play an important role as decomposers of the forest ecosystem, while simultaneously causing enormous damage to wooden structures. Currently, two species of subterranean termites have been reported in Korea, and termite damage to historical wooden buildings is occurring nationwide due to climate change, forest fertility, and the locational characteristics of historical wooden buildings. Subterranean termites make their nests underground or inside timber. Termites move underground and access wooden structures through the lower parts of the buildings, adjacent to the ground. Once termites attack the wooden structures, it not only spoils the authenticity of cultural heritage structure, but also hampers structural stability due to the decrease in the strength of the material. Therefore, it is important to prevent termite damage before it occurs. Chemical treatments are mainly used in Korea to control and prevent the damage. In foreign countries, physical barriers are also used to prevent entry to wooden buildings, along with chemical treatments. Physical barriers involve installing nets or particles that termites cannot pass through in the lower part of the building, around the pipes, and between the edges of the building or exterior walls and interior materials. Advantages of a physical barrier are that it is an eco-friendly method, maintains long-term effect after installation, and does not require the use of chemical treatments. Prior to applying physical barriers, studies into the characteristics of termite species must be undertaken. In this study, we evaluated the minimum passage size that each caste of Reticulitermes speratus kyushuensis can move through. We found that workers, soldiers, and secondary reproductive termites were able to pass through diameters of 0.7mm, 0.9mm, and 1.1mm respectively. Head height of termites was an important factor in determining the minimum passing size. Results from the current study will be used as a basis to design the mesh size for physical barriers to prevent damage by termites in historical wooden buildings in Korea.

Long-term Climate Change Research Facility for Trees: CO2-Enriched Open Top Chamber System (수목의 장기 기후변화 연구시설: CO2 폭로용 상부 개방형 온실)

  • Lee, Jae-Cheon;Kim, Du-Hyun;Kim, Gil-Nam;Kim, Pan-Gi;Han, Sim-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2012
  • The open-top chamber (OTC) system is designed for long term studies on the climate change impact on the major tree species and their community in Korea. In Korea Forest Research Institute (KFRI), the modified OTC system has been operating since September 2009. The OTC facility consists of six decagon chambers (10 meters in diameter by 7 meters high) with controlled gas concentration. In each chamber, a series of vertical vent pipes are installed to disperse carbon dioxide or normal air into the center of the chamber. The OTC is equipped with remote controlled computer system in order to maintain a stable and elevated concentration of carbon dioxide in the chamber throughout the experimental period. The experiment consisted of 4 treatments: two elevated $CO_2$ levels ($1.4{\times}$ and $1.8{\times}$ ambient $CO_2$) and two controls (inside and outdoors of the OTC). Average operational rate was the lowest (94.2%) in June 2010 but increased to 98% in July 2010 and was 100% during January to December 2011. In 2010~2011, $CO_2$ concentrations inside the OTCs reached the target programmed values, and have been maintained stable in 2011. In 2011, $CO_2$ concentrations of 106%, 100% and 94% of target values has been recorded in control OTC, $1.4{\times}$ $CO_2$-enriched OTC and $1.8{\times}$ $CO_2$-enriched OTC, respectively. With all OTC chambers, the difference between outside and inside temperatures was the highest ($1.2{\sim}2.0^{\circ}C$) at 10 am to 2 pm. Temperature difference between six OTC chambers was not detected. The relative humidity inside and outside the chambers was the same, with minor variations (0~1%). The system required the highest amount of $CO_2$ for operation in June, and consumed 11.33 and 17.04 ton in June 2010 and 2011, respectively.

Sequential Changes in Understory Vegetation Community for 15 Years in the Long-Term Ecological Research Site in Central Temperate Broad-leaved Deciduous Forest of Korea (한반도 온대중부 낙엽활엽수림 장기생태조사지에서 15년간 하층식생 군집의 시계열적 변화)

  • Kim, Min-Su;Yun, Soon-Jin;Park, Chan-Woo;Choi, Won-Il;Chun, Jung-Hwa;Lim, Jong-Hwan;Bae, Kwan-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.3
    • /
    • pp.223-236
    • /
    • 2021
  • This study aims to provide basic data for the systematic conservation and efficient management of forest ecosystems by analyzing changes in understory vegetation of temperate broad-leaved deciduous forests. One-hectare permanent survey plot, consisting of 100 subplots sized 10 × 10 meters, was installed in Gwangneung forest in Pocheon, Gyeonggi-do in 2003. The state of stands and the understory vegetation in the permanent survey plot were examined at a 5-year interval from 2003 to 2018. The vascular plants found in the survey area were 56 families, 128 genera, 176 species, 18 variants, 4 varieties, and 1 subspecies, for a total of 199 taxa. The number of species in both the shrub layer and the herbaceous layer showed a tendency to decrease with time. The MRPP-tests showed a significantly differing species composition of the shrub layer in all years except 2008-2013, whereas significant differences were found in all years concerning the herbaceous layer. As for the average importance value, Euonymus oxyphyllus (18.23%), Acer pseudosieboldianum (16.48%), and Callicarpa japonica (13.85%) were dominant in the shrub layer, while Ainsliaea acerifolia (23.41%), Disporum smilacinum (9.45%), and Oplismenus undulatifolius (5.62%) were dominant in the herbaceous layer. In the shrub layer, the richness of Smilax china, Lonicera subsessilis, and Philadelphus schrenkii was high when the basal area and the stand density of an upper layer were high. By contrast, smaller basal area and stand density were associated with the richness of Acer pseudosieboldianum, Deutzia glabrata, Morus bombycis, and Cornus kousa. Furthermore, it was found out that the impact of the basal area and the stand density on the herbaceous layer decreased over time, while the herb layer's species composition was greatly affected by cover degrees of Euonymus oxyphyllus and Acer pseudosieboldianum in the shrub layer. In conclusion, the number of species in the understory vegetation in Gwangneung forest is continuously decreasing, thus implying that species diversity, basal area, and stand density of an upper layer can influence the species composition in understory vegetation.

Analysis of Spatial and Vertical Variability of Environmental Parameters in a Greenhouse and Comparison of Carbon Dioxide Concentration in Two Different Types of Greenhouses (온실 환경요인의 공간적 및 수직적 특성 분석과 온실 종류에 따른 이산화탄소 농도 비교)

  • Jeong, Young Ae;Jang, Dong Cheol;Kwon, Jin Kyung;Kim, Dae Hyun;Choi, Eun Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • This study was aimed to investigate spatial and vertical characteristics of greenhouse environments according to the location of the environmental sensors, and to investigate the correlations between temperature, light intensity, and carbon dioxide (CO2) concentration according to the type of greenhouse. Temperature, relative humidity (RH), CO2, and light sensors were installed in the four-different vertical positions of the whole canopy as well as ground and roof space at the five spatial locations of the Venlo greenhouse. Also, correlations between temperature, light intensity, and CO2 concentration in Venlo and semi-closed greenhouses were analyzed using the Curve Expert Professional program. The deviations among the spatial locations were larger in the CO2 concentration than other environmental factors in the Venlo greenhouse. The average CO2 concentration ranged from 465 to 761 µmol·mol-1 with the highest value (646 µmol·mol-1) at the Middle End (4ME) close to the main pipe (50Ø) of the liquefied CO2 gas supply and lowest (436 µmol·mol-1) at the Left Middle (5LM). The deviation among the vertical positions was greater in temperature and relative humidity than other environments. The time zone with the largest deviation in average temperature was 2 p.m. with the highest temperature (26.51℃) at the Upper Air (UA) and the lowest temperature (25.62℃) at the Lower Canopy (LC). The time zone with the largest deviation in average RH was 1 p.m. with the highest RH (76.90%) at the LC and the lowest RH (71.74%) at the UA. The highest average CO2 concentration at each hour was Roof Air (RF) and Ground (GD). The coefficient of correlations between temperature, light intensity, and CO2 concentration were 0.07 for semi-closed greenhouse and 0.66 for Venlo greenhouse. All the results indicate that while the CO2 concentration in the greenhouse needs to be analyzed in the spatial locations, temperature and humidity needs to be analyzed in the vertical positions of canopy. The target CO2 fertilization concentration for the semi-closed greenhouse with low ventilation rate should be different from that of general greenhouses.