• Title/Summary/Keyword: 배관설계 비용

Search Result 30, Processing Time 0.03 seconds

A Study on Economic Evaluation and Conceptual Design of Compressor Station for Transmission Pipeline in Artic Area (극한지 배관망 승압기지 개념설계 및 경제성평가에 관한 연구)

  • Cho, Won-Jeong;Kim, Sei-Yun;Han, Hyo-Jun;Kwon, Hwee-Ung
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.24-30
    • /
    • 2018
  • In the case of arctic area long-distance natural gas transmission pipeline, it is necessary to construct capable facilities to maintain the gas pressure because the gas pressure is reduced according to the pipeline characteristics and route conditions. In order to maintain the proper NG pressure, it is necessary to secure economy considering the cost of main equipments of the compressor station, construction and operation cost when the compression ratio is shortened or increased by constructing the distance of the compressor station. Therefore, In this study, preliminary study on construction of arctic area long-distance transmission pipeline was reviewed and conduct conceptual design by constructing main equipments process that can reduce the construction cost of the compressor station in arctic area. In particular, in order to evaluate economic feasibility of the long-distance transmission pipeline in arctic area, the virtual area for Yakutsk~Aldan region(Russia) was supposed. The total pipeline length of the virtual is 533km, The scenarios for the location of the compressor station presented. The capacity estimated about the main equipments of the compressor station. As a result, the economic evaluation method reviewed which can minimize the construction cost of the compressor station.

The Research of Layout Optimization for LNG Liquefaction Plant to Save the Capital Expenditures (LNG 액화 플랜트 배치 최적화를 통한 투자비 절감에 관한 연구)

  • Yang, Jin Seok;Lee, Chang Jun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.51-57
    • /
    • 2019
  • A plant layout problem has a large impact on the overall construction cost of a plant. When determining a plant layout, various constraints associating with safety, environment, sufficient maintenance area, passages for workers, etc have to be considered together. In general plant layout problems, the main goal is to minimize the length of piping connecting equipments as satisfying various constraints. Since the process may suffer from the heat and friction loss, the piping length between equipments should be shorter. This problem can be represented by the mathematical formulation and the optimal solutions can be investigated by an optimization solver. General researches have overlooked many constraints such as maintenance spaces and safety distances between equipments. And, previous researches have tested benchmark processes. What the lack of general researches is that there is no realistic comparison. In this study, the plant layout of a real industrial C3MR (Propane precooling Mixed Refrigerant) process is studied. A MILP (Mixed Integer Linear Programming) including various constraints is developed. To avoid the violation of constraints, penalty functions are introduced. However, conventional optimization solvers handling the derivatives of an objective functions can not solve this problem due to the complexities of equations. Therefore, the PSO (Particle Swarm Optimization), which investigate an optimal solutions without differential equations, is selected to solve this problem. The results show that a proposed method contributes to saving the capital expenditures.

A Practical Approach for Optimal Design of Pipe Diameters in Pipe Network (배관망에서의 파이프 직경 최적설계에 대한 실용적 해법)

  • Choi Chang-Yong;Ko Sang-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.635-640
    • /
    • 2006
  • An optimizer has been applied for the optimal design of pipe diameters in the pipe flow network problems. Pipe network flow analysis, which is developed separately, is performed within the interface for the optimization algorithm. A pipe network is chosen for the test, and optimizer GenOpt is applied with Holder-Mead-O'Niell's simplex algorithm after solving the network flow problem by the Newton-Raphson method. As a result, optimally do-signed pipe diameters are successfully obtained which minimize the total design cost. Design cost of pipe flow network can be considered as the sum of pipe installation cost and pump operation cost. In this study, a practical and efficient solution method for the pipe network optimization is presented. Test system is solved for the demonstration of the present optimization technique.

Risk Assessment Program of underground buried Pipeline Development (지하매설배관의 위험성평가 프로그램 개발)

  • Kim Tae Wook;Sung Jun Sik;Cho Yong Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.37-45
    • /
    • 2000
  • The underground buried pipelines of Natural gas are relatively safer than any other pipelines of chemical plants, because Natural gas is non-corrosive fluid. But Natural gas is supplied normally the downtown area. So, it may be a disaster because of corrosion which is caused interference facilities, environment and third party accident which is caused facilities construction. Especially, it is very difficult to find out and inspect damages of pipeline because of buried pipelines. Therefore this paper approached to select and manage risk region pipelines according to introduction of underground buried pipeline's risk concept. Risk was indicated three parts - corrosion factor, design and construction factor, maintence and management factor - in this paper, Therefore qualitive risk of pipelines showed score as quantitative number. Also it was thought to be helpful in confidence and safety management that the concept of key index and failure supplementation measures to cost introduces this program. We developed this risk assessment program using visual basic tool and interfaced GIS.

  • PDF

Development of Split Tees for Gas Steel Pipelines (강재 가스배관용 분기티의 개발 연구)

  • Kim Young Gyu;Noh Ou Sun;Kim Ji Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.6-12
    • /
    • 2000
  • We have developed a new split tee which can be used to effectively branch into a main gas steel pipelines without losing any gas pressure or having to shut down a line. The split tee has been designed considering the locations of branch connection to the pipelines. Therefore, we could keep the depth of buried pipelines which used to be the problem of the conventional split tees. Test results of the developed split tee showed that the performance of the tightness, hydraulic strength, sealing, welding, bending, and compatibility were excellent. The application of the split tee can provide the advantage of eliminating cost and time, and easy field pipeline coatings.

  • PDF

Development of the computer program calculating the stress induced by various loads for buried natural gas pipeline ( I ) (매설 천연가스 배관의 제반하중에 의한 응력 계산용 프로그램 개발 (I))

  • Bang I.W.;Kim H.S.;Kim W.S.;Yang Y.C.;Oh K.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.18-25
    • /
    • 1998
  • According to the requirements of ANSI B3l.8, the pipe thickness is determined with hoop stress resulted from internal pressure. And the other loads induced by soil, vehicle, thermal expansion, ground subsidence, etc shall be evaluated rationally. There are two ways of calculating stress of buried gas pipeline. The first is FEM. FEM can calculate the stress regardless of the complexity of pipeline shape and boundary conditions. But it needs high cost and long time. The second is the way to use equation. The reliable equations to calculate the stress of buried gas pipeline was developed and have been used in designing pipeline and evaluating pipeline safety, But these equation are very difficult to understand and use for non-specialist. For easy calculation of non-specialist, the new computer program to calculate stress of buried natural gas pipeline have been developed. The stress is calculated by the equations and extrapolation of the graph resulted from FEM. The full paper is consist of series I and II. In this paper, series I, the calculating equation of the program is explained in detail.

  • PDF

Finite Element Analysis of Cold forming Process for Manufacturing of Automotive Air-Conditioning filter housing (차량용 에어컨 필터하우징 제작을 위한 냉간단조 공정 유한요소해석)

  • Min, Kyu-Young;Jung, Bae-Young;Park, Sung-Young;Park, Yong-Bok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.525-527
    • /
    • 2009
  • 본 논문에서는 자동차 공조부품인 리시버드라이어로서 플랜지와 바디로 구성되어 있다. 리시버드라이어는 냉매 중 포함된 습기 및 기타 불순물을 차단하는 부품으로서 사이트글라스가 부착되어 냉매의 흐름의 상태를 알 수 있다. 또한 압력 밸브가 부착되어 있어 냉매 회로의 압력과 온도가 상승하면 녹아서 냉매를 배출하므로 배관이나 부품들의 압력에 의해서 파괴되는 것을 방지 할 수 있다. 최근 경제적 성형에 관심이 많아 대표적 성형공정인 냉간단조를 적용하여 소재 회수율 및 절삭 비용 등을 절감하는데 목적을 두었다. 냉간단조를 적용하여 자동차 공조 부품인 플랜지와 바디를 개발하는데 공정설계, 금형설계, 금형제작 기술을 확보하였다.

  • PDF

Optimal Determination of Pipe Support Types in Flare System for Minimizing Support Cost (비용 최소화를 위한 플래어 시스템의 배관 서포트 타입 최적설계)

  • Park, Jung-Min;Park, Chang-Hyun;Kim, Tea-Soo;Choi, Dong-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.325-329
    • /
    • 2011
  • Floating, production, storage and offloading (FPSO) is a production facility that refines and saves the drilled crude oil from a drilling facility in the ocean. The flare system in the FPSO is a major part of the pressure relieving system for hydrocarbon processing plants. The flare system consists of a number of pipes and complicated connection systems. Decision of pipe support types is important since the load on the support and the stress in the pipe are influenced by the pipe support type. In this study, we optimally determined the pipe support types that minimized the support cost while satisfying the design constraints on maximum support load, maximum nozzle load and maximum pipe stress ratio. Performance indices included in the design constraints for a specified design were evaluated by pipe structural analysis using CAESAR II. Since pipe support types were all discrete design variables, an evolutionary algorithm (EA) was used as an optimizer. We successfully obtained the optimal solution that reduced the support cost by 27.2% compared to the initial support cost while all the design requirements were satisfied.

Design and Implementation of Real-Time Indirect Health Monitoring System for the Availability of Physical Systems and Minimizing Cyber Attack Damage (사이버 공격 대비 가동 물리장치에 대한 실시간 간접 상태감시시스템 설계 및 구현)

  • Kim, Hongjun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1403-1412
    • /
    • 2019
  • Effect of damage and loss cost for downtime is huge, if physical devices such as turbines, pipe, and storage tanks are in the abnormal state originated from not only aging, but also cyber attacks on the control and monitoring system like PLC (Programmable Logic Controller). To improve availability and dependability of the physical devices, we design and implement an indirect health monitoring system which sense temperature, acceleration, current, etc. indirectly, and put sensor data into Influx DB in real-time. Then, the actual performance of detecting abnormal state is shown using the indirect health monitoring system. Analyzing data are acquired using the real-time indirect health monitoring system, abnormal state and security threats can be double-monitored and lower maintenance cost utilizing prognostics and health management.

Numerical Simulation of Bullet Impact for Fuel Cell of Rotorcraft (회전익항공기용 연료셀 피탄 수치모사)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Kim, Hwak-Bum;Choi, Yong-Hoon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.649-652
    • /
    • 2012
  • 회전익항공기의 연료셀 내부는 연료보관 및 연료를 엔진으로 공급하기 위한 배관과 구성품들이 배치되어 있다. 특히, 기동헬기는 전장에서 사용되는 헬기로써, 수 km 고도에서 비행하는 고정익기보다 비행고도가 낮기 때문에 피탄될 가능성이 높다. 따라서, 항공기의 생존성을 극대화하기 위해서는 피탄시 유체내부 상승압력에 의한 내부 LRU 가 받는 영향성을 검토하여 설계되어야 함은 주지의 사실이다. 그러나, 내탄시험은 연료셀 자체의 제작비용 및 준비기간이 상당히 소요되고, 실탄사용에 따른 시험수행의 제약 때문에 수치모사를 통한 관련 데이터의 확보가 필요하다. 이를 위해 본 연구에서는 유체-구조 수치모사 프로그램인 Autodyn을 이용하여 회전익항공기 연료셀의 내탄 수치모사를 수행하여, 피탄 후 연료셀 내부에서의 탄 거동을 분석하고 유체내부의 압력과 연료 셀 자체의 등가응력을 평가하였다.

  • PDF