• Title/Summary/Keyword: 방호벽체

Search Result 9, Processing Time 0.023 seconds

Study on the Development of Protective Walls to prevent the spread of Ultra-Fast Fire in Small Industrial Facilities (소규모 산업시설의 초고속 화재 확산 방지를 위한 방호벽체 개발 연구)

  • Choe, Gyeong-Choe;Kim, Hong-Seop2
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.275-276
    • /
    • 2023
  • This study introduces the current progress of study on the development of protective wall aimed at preventing the spread of ultra-fast fires and ensuring fire safety in industrial facilities.

  • PDF

Evaluation on Blast Resistance Performance of Reinforced Concrete Wall Strengthened by FRP Sheet (FRP 시트로 보강된 철근콘크리트 벽체의 방호성능 평가)

  • Lee, Kun-Ho;Kim, Jae-Min;Kim, Jae Hyun;Lee, Sang-Hoon;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.151-160
    • /
    • 2022
  • Owing to the recent increase in the frequency of explosion accidents, blast resistive design has garnered attention to reduce the damage of important structural elements. However, domestic research on the blast resistive structures is still insufficient, and domestic design guideline against blast loads are not documented yet. In this study, a numerical study on the RC blast resistive walls, where the test variable was the presence of FRP sheet, was performed using LS-DYNA program. Based on the numerical results, displacement-time hysteretic curve, pressure-impulse diagram, and fragility curve of the test specimens were derived. It was shown that the FRP sheet strengthening method is efficient to improve the blast resistive performance of the RC wall. Also, the strengthening effect of FRP sheet on the RC wall was stronger when the magnitude of the blast load was greater.

The Design and Protective Capacity Assessment of the Prefabricated PC Arch Ammo Magazines (아치형 조립식 PC 탄약고 설계 및 방호성능 평가)

  • Park, Jang-Kweon;Lim, Chul-Won;Ryu, Dong-Woo;Son, Ki-Young;Baek, Jong-Hyuk;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.615-621
    • /
    • 2014
  • This study suggests the design and assembly drawing of the prefabricated precast concrete arch ammo magazines using the numerical analysis as well as the explosion verification test. The protective capacity of the proposed magazines is identified with the maximum support rotation angles measured by explosion verification tests according to the U.S. Unified Facility Criteria 3-340-02. Using numerical analysis, it is examined that oval-type members are better than the semi-circle ones in terms of protective capacity. Based on this numerical results, the design and assemble drawing for the prefabricated precast concrete arch ammo magazine are developed. It is identified that the structure constructed by invented design and assembly drawing has enough protective capacity against blast pressure caused by 133.75kg TNT explosion. The detonation point cannot be open due to the military security. In sum, it could be concluded that the ammo magazine proposed in this study has reliable protective capacity with enough redundancy. The redundancy means that there are more economic design approach with reducing the curved wall thickness.

Review about Thermal Stability Reinforcing Method of the Concrete Sidewall of the LNG Storage Tank Using Sprayed PUF (스프레이 PUF를 이용한 LNG 저장탱크 외조 벽체의 열적 안정성 강화 방법에 대한 고찰)

  • Lee, Yeongbeom;Choe, Keonhyeong;Yoon, Ihnsoo;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • LNG storage tank is a facility to store liquefied natural gas (LNG) and its safety and stability to be greatly needed. When there is a LNG leakage in case of primary container problem, a special facility such as a bund wall should be constructed to store the leaked LNG. But this method makes the land usage inefficient and construction price high. So nowadays the full containment type LNG storage tank is selected instead of constructing a bund wall. In the full containment type tank, the concrete sidewall has the ability to store LNG temporarily. There are largely two methods to give the concrete sidewall the ability. In a method, rebar should be used when constructing the side wall of the LNG storage tank. In the other method, the protecting material such as sprayed polyurethane foam should be applied on the inner surface of the concrete sidewall. Sprayed PUF keeps the temperature of the sidewall above the specified temperature during the specified periods. Recently the thermal stability reinforcing method using sprayed polyurethane foam has been applied to all LNG storage tank built in Korea.

A Study on the Operation Improvement of Door Fan Test (Door Fan Test 운영개선에 관한 연구)

  • Kong, Il-Chean;Kim, Hak-Kyung;Choi, Du-Chan;Kim, In-Tae
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.275-277
    • /
    • 2016
  • 본 논문에서는 Door Fan Test 수행 사례를 중심으로 사전 준비에 필요한 사항에 대해 분석하였다. 분석 결과 관통부 주위 개구부, 벽체 틈새 개구부 등 방화구역의 누설부위를 통해 약제가 누출되는 문제가 있었다. 원인으로는 전기배선 공사로 인해 내화충전된 부분을 제거하고 공사 후 다시 충전하지 않는 경우, 벽과 천장사이의 틈을 내화 실란트 등으로 마감을 하지 않은 경우가 대부분이었다. 이와 같이 누설부위가 많은 경우 테스트의 결과 불합격이 나오게 되며, 이러한 문제점을 개선하기 위해 사전현장조사를 통해 방호구역의 누설부위를 조사하고 보완조치를 진행한 후 테스트를 수행하는 절차가 필요하였다. 한편, 테스트 운영에 관한 사항으로는 해당 실(room)을 위한 충분한 유량 미확보, 장애물로 인한 와류형성, 차압측정구의 설치문제 등이 있었다. 이를 개선하기 위해서 공기를 유입하는 실은 외부로부터 충분한 공기유입이 있어야하며, 팬 앞의 장애물을 제거하거나 팬의 설치 위치를 조정하는 것이 필요하며, 공기의 유동이 가장 적은 곳에 측정구를 설치하는 등의 조치가 필요하다.

  • PDF

Generation of Gamma-Ray Streaming Kernels Through Cylindrical Ducts Via Monte Carlo Method (몬테칼로 방법을 이용한 원통형 관통부의 감마선 스트리밍 커널의 산출)

  • Kim, Dong-Su;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.80-90
    • /
    • 1993
  • Radiation streaming through penetrations has been of great concern in radiation shielding design and analysis. This study developed a Monte Carlo method and constructed a data library of results calculated by the Monte Carlo method for radiation streaming through a straight cylindrical duct in concrete walls of a broad, mono-directional, mono-energetic gamma-ray beam of unit intensity. It was demonstrated that average dose rate due to an isotropic point source at arbitrary positions can be well approximated using the library with acceptable error. Thus, the library can be used for efficient analysis of radiation streaming due to arbitrary distributions of gamma-ray sources.

  • PDF

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions (지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Sung-Wook;Moon, Jae-Heum;Kim, Won-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.339-349
    • /
    • 2020
  • Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

The Development of Compressive Strength Estimation Equation for LNG Storage Tank using Rebound Hardness Method (반발경도법을 이용한 LNG 저장탱크 콘크리트의 압축강도 추정식 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.26-32
    • /
    • 2017
  • Outer tank concretes of LNG storage tank are composed of prestressed concrete structures that act as a protective wall. The danger such as the collapse of structures will exist if concrete structures is not secured due to the deterioration. Concrete compressive strength directly related to the safety of structures can be predicted by using estimation equation of compressive strength through rebound hardness test and ultrasonic wave velocity method. But, there is no the estimation equation of LNG storage tank for a relation between NDT data and real strength. In this study, to obtain more accurate real strengths for LNG storage tank, core specimens were sampled from walls of pilot LNG storage tank. The rebound hardness test of general NDT for concrete structures was carried out at each 3 positions for the four areas. The compressive strength estimation equation of LNG storage tank was developed by using the data for rebound hardness test of pilot LNG storage tank and compressive strength test of sampled concrete cores.

Analytical Assessment of Blast Damage of 270,000-kL LNG Storage Outer Tank According to Explosive Charges (270,000 kL급 LNG 저장 탱크 외조의 폭발량에 따른 손상도 해석적 평가)

  • Kim, Jang-Ho Jay;Choi, Seung-Jai;Choi, Ji-Hun;Kim, Tae-Kyun;Lee, Tae-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.685-693
    • /
    • 2016
  • The outer tank of a liquefied natural gas (LNG) storage tank is a longitudinally and meridionally pre-stressed concrete (PSC) wall structure. Because of the current trend of constructing larger LNG storage tanks, the pre-stressing forces required to increase wall strength must be significantly increased. Because of the increase in tank sizes and pre-stressing forces, an extreme loading scenario such as a bomb blast or an airplane crash needs to be investigated. Therefore, in this study, the blast resistance performance of LNG storage tanks was analyzed by conducting a blast simulation to investigate the safety of larger LNG storage tanks. Test data validation for a blast simulation of reinforced concrete panels was performed using a specific FEM code, LS-DYNA, prior to a full-scale blast simulation of the outer tank of a 270,000-kL LNG storage tank. Another objective of this study was to evaluate the safety and serviceability of an LNG storage tank with respect to varying amounts of explosive charge. The results of this study can be used as basic data for the design and safety evaluation of PSC LNG storage tanks.