• Title/Summary/Keyword: 방향탐지안테나

Search Result 64, Processing Time 0.024 seconds

Application of Borehole Radar to Tunnel Detection (시추공 레이다 탐사에 의한 지하 터널 탐지 적용성 연구)

  • Cho, Seong-Jun;Kim, Jung-Ho;Kim, Chang-Ryol;Son, Jeong-Sul;Sung, Nak-Hun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.279-290
    • /
    • 2006
  • The borehole radar methods used to tunnel detection are mainly classified into borehole radar reflection, directional antenna, crosshole scanning, and radar tomography methods. In this study, we have investigated the feasibility and limitation of each method to tunnel detection through case studies. In the borehole radar reflection data, there were much more clear diffraction signals of the upper wings than lower wings of the hyperbolas reflected from the tunnel, and their upper and lower wings were spreaded out to more than 10m higher and lower traces from the peaks of the hyperbolas. As the ratio of borehole diameter to antenna length increases, the ringing gets stronger on the data due to the increase in the impedance mismatching between antennas and water in the boreholes. It is also found that the reflection signals from the tunnel could be enhanced using the optimal offset distance between transmitter and receiver antennas. Nevertheless, the borehole radar reflection data could not provide directional information of the reflectors in the subsurface. Direction finding antenna system had a advantage to take a three dimensional location of a tunnel with only one borehole survey even though the cost is still very high and it required very high expertise. The data from crosshole scanning could be a good indicator for tunnel detection and it could give more reliable result when the borehole radar reflection survey is carried out together. The images of the subsurface also can be reconstructed using travel time tomography which could provide the physical property of the medium and would be effective for imaging the underground structure such as tunnels. Based on the results described above, we suggest a cost-effective field procedure for detection of a tunnel using borehole radar techniques; borehole radar reflection survey using dipole antenna can firstly be applied to pick up anomalous regions within the borehole, and crosshole scanning or reflection survey using directional antenna can then be applied only to the anomalous regions to detect the tunnel.

An Amplitude Comparison Direction-Finding Antenna Assembly for Mounting on a Small Flight Vehicle (소형 비행체 탑재를 위한 크기 비교용 방향 탐지 안테나 조립체)

  • Kim, Jaesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.459-465
    • /
    • 2020
  • In this paper, a compact antenna assembly for an amplitude comparison direction-finding(DF) method for a small flight vehicle is presented. Designed antenna assembly consists of four antennas and it is mounted on a radius of 1.45 λc where λc corresponds to the wavelength of the center frequency. To achieve compactness and robustness of the assembly, the elements are fed by end-launch feeding method and have modified aperture shapes of E- or H-sectoral horns. The feeding part consists of SMA connector, stepped impedance matching structure, and square waveguide of 0.6 λc × 0.6 λc. To achieve different main beam directions for every antenna which is required condition for amplitude comparison DF method, all apertures of the antennas are inclined and it makes the main beam direction of each antenna to top, bottom, left, and right with respect to the axis of the platform. To verify the validation of DF performance of the presented antenna assembly, amplitude comparison curves using measurement results are presented. The bandwidth of the antennas are above 3.2 % in Ku-band(VSWR ≤ 2:1).

A Study on Optimal Deployment for Improvement of EMI between MOSCOS and ES DF Antenna on a Surface Ship (수상함 MOSCOS와 ES 방향탐지 안테나간의 전자기 간섭 개선을 위한 최적배치 연구)

  • Chang, Hoseong;Son, Yoonjun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • During the sea trial, we discovered EMI between MOSCOS and ES DF antenna. CW emitted by MOSCOS raised the threshold level of ES DF antenna. As a result, direction finding rate of ES has been decreased. This is a study for the improvement of EMI between the antennas mounted on a surface ship. An analysis is accomplished for MOSCOS, ES DF antenna and Jamming transmitter. This paper presents the method how to solve EMI based on the measurements and calculations about the ES DF antenna receiving level, MOSCOS radiation pattern and Jamming transmitter thermal noise. The test was performed with optimal deployment of MOSCOS on a surface ship. After changing the position of MOSCOS, EMI has been decreased significantly.

Direction Finding and Tracking using Single-Ring Circular Array Antenna and Space Division Table (단원형배열안테나와 공간분할테이블을 이용한 방향탐지 및 추적)

  • Park, Hyeongyu;Woo, Daewoong;Kim, Jaesik;Park, Jinsung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.117-124
    • /
    • 2022
  • Single-ring circular array antennas can be applied to direction finding systems in order to use nose-section in other purposes, and the interferometry is a proper direction finding method to those systems. We usually make the interferometer baseline long enough to achieve good angular accuracy. However, an interferometer with baseline longer than a half-wavelength has the ambiguity problem. In this paper, we present a novel method for solving the ambiguity problem in interferometry systems. This technique is based on the amplitude comparison method and the space division table, and it can place a target within the angular region in which the ambiguity problem does not occur by roughly estimating direction-of-arrival. The Monte Carlo simulation results show that proposed method can effectively remove the ambiguity problem in the system.

Design of Broadband Spiral Antenna for Non-Linear Junction Detector (비선형 소자 탐지용 광대역 스파이럴 안테나의 설계)

  • Kim, Tae-Geun;Min, Kyeong-Sik;Lee, Kwang-Kun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • This paper presents a design of spiral antenna with broad bandwidth for non-linear junction detector(NLJD). An elliptical patch as radiating element located on center position of radiating surface, as well as the spiral elements on radiating surface was designed for broad bandwidth of spiral antenna. An antenna ground structure generating the multi resonance by spiral slit inserted on ground surface was also proposed. In order to realize high directivity and high gain of the proposed antenna, the cavity wall made of Fr4-epoxy and the metal cap were considered in design. As a result, the calculated gain of antenna with metal cap was improved about 3 dB with comparison of antenna without metal cap and the measured main beam directivity toward -z axis direction agreed well with calculation result. The measured axial ratio satisfied the circular polarization within -z axis ${\pm}45^{\circ}$ at design frequency bands and showed reasonable agreement with prediction.

Performance Analysis on Digital Phase Difference Measurement Techniques for Interferometer Direction Finder (인터페로미터 방향 탐지기의 디지털 위상차 측정 기법 성능 분석)

  • Kang, Jong-jin;Park, Sung-kyun;Roh, Ji-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1076-1082
    • /
    • 2018
  • This paper describes interferometer direction finder which measures the angle of arrival based on calculation of the phase difference of received radio signal from different antennas. Modern Electronic Warfare direction finder uses digital phase difference measuring techniques which have less effect on temperature variation and better performance under low Signal to Noise Ratio environment. In this paper, we analyze acceptable phase difference error for requirement of system's direction finding accuracy and introduce digital phase difference calculation techniques. We have investigated quantitative analysis on phase difference calculation according to sample number, SNR, interference injection. Through the simulation, frequency domain measurement technique is better performance than the time domain one at the environment of low SNR and interference injection. Proposed method can be used to determine the performance of interferometer direction finder.

The Design of Array Geometry in 2-D Multiple Baseline Direction Finding (2차원 멀티베이스라인 방향탐지 배열 구조 설계)

  • Park, Cheol-Sun;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.988-995
    • /
    • 2006
  • In this Paper, we Present a nonharmonic may geometry design method using Euclidan minimum distance function in difference Phase spaces for 2-D (azimuth/elevation) multiple baseline antenna may which has a way to reduce the number of sensor antennas while maintaining accurate DOA estimate. The major advantages of our approach is that even the shortest interelement spacing can be larger than half-wavelength and is not limit13d to linear and it can be applied successfully to any array configuration. In multiple signals impinging situation, the performance simulation results of superresolution algorithms shows the effectiveness of the proposed method. Also the 2-D asymmetric may using the Proposed method is designed and the Performance of the manufactured away through the experimental test is verified.

The Geolocation Estimation System for a Stationary Emitter using Rotating Antenna (회전안테나를 이용한 고정 신호원 위치탐지 시스템)

  • Kwak, Hyungyu;Kim, Sangwon;Choi, Daegyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.681-689
    • /
    • 2016
  • In the direction and location finding field of application, AOA, TDOA and FDOA, etc. are used to improve the performance of geolocation. But, these methods cause some limitations such as the calibrations for phase and amplitude matching and precise time synchronization among receiving channels. In this paper, We suggest a method for generating FDOA using rotating antenna and the geolocation of stationary emitter using two receivers in one platform for minimizing the limitations. We present performance of simulation results and test results of the FDOA geolocation system. The direction finding errors of the system are less than $0.1^{\circ}$ rms and the distance errors are less than 3 % compared with the practical distance.

Compressive Sensing-Based L1-SVD DOA Estimation (압축센싱기법 기반 L1-SVD 도래각 추정)

  • Cho, Yunseong;Paik, Ji-Woong;Lee, Joon-Ho;Ko, Yo Han;Cho, Sung-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.388-394
    • /
    • 2016
  • There have been many studies on the direction-of-arrival(DOA) estimation algorithm using antenna arrays. Beamforming, Capon's method, maximum likelihood, MUSIC algorithms are the main algorithms for the DOA estimation. Recently, compressive sensing-based DOA estimation algorithm exploiting the sparsity of the incident signals has attracted much attention in the signal processing community. In this paper, the performance of the L1-SVD algorithm, which is based on fitting of the data matrix, is compared with that of the MUSIC algorithm.

Monopulse Secondary Surveillance Radar Antenna with Sum/Difference/SLS Channels (합/차/부엽 억제 채널을 갖는 모노펄스 보조 감시 레이더(용) 안테나)

  • Choi, Jong-Hwan;Chae, Hee-Duck;Park, Jong-Kuk;Na, Hyung-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.720-728
    • /
    • 2011
  • In this paper, development of the monopulse secondary surveillance radar antenna which can be used for IFF system is presented. This antenna that is passive linear array is comprised of the row-feeder and several array-elements. The row-feeder provides sum, different and SLS(Sidelobe Supression) channels which are optimized the distribution of the power and phase ratio. The azimuthe sidelobe level of the sum channel beam pattern is -20 dBc or less. The SLS channel covers the sidelobe of the sum-chanel in the whole azimuth angle range. And the difference channel is used to perform the mono-pulse function, improves the detection accuracy in the azimuth direction. Meanwhile, the arrayelement makes shaped beam in the elevation angle, in order to eliminate the clutter and multipath effects from the ground. Performance of the antenna developed is verified by the measurement of S-parameters and far-field beam pattern, and satisfies all of the development specifications well.