• 제목/요약/키워드: 방향타 캐비테이션

검색결과 9건 처리시간 0.018초

LCT에서 방향타 동력계를 이용한 평판 및 비틀림 방향타 특성의 실험적 연구 (Experimental Study of the Flat & Twisted Rudder Characteristics Using Rudder Dynamometer in LCT)

  • 안종우;백부근;박영하;설한신
    • 대한조선학회논문집
    • /
    • 제58권6호
    • /
    • pp.391-399
    • /
    • 2021
  • In order to investigate force and cavitation characteristics for the flat & twisted rudders in the Large Cavitation Tunnel (LCT), the rudder dynamometer was designed and manufactured. The measuring capacities of lift, drag and moment are ±1000 N, ±2000 N, and ±150 N-m, respectively. The present dynamometer uses the actuator with a harmonic drive to control the rudder angle without backlash. As the target ship is a military ship with twin shaft, each dynamometer was installed above the port & starboard rudders. After the installation of the model ship with all appendages, the model test composed of rudder force measurement and cavitation observation was conducted for the existing flat rudder & the designed twisted rudder. While the flat rudder showed the big difference of lift & moment between port & starboard, the twisted rudder presented a similar trend. The cavitation of the twisted rudder showed better characteristics than that of the flat rudder. Another set of model tests were conducted to investigate rudder performance by the change of the design propeller. There was little difference in rudder performance for the design propellers with slight geometric change. Through the model test, the characteristics of the flat & twisted rudders were grasped. On the basis of the present study, it is thought that the rudder with better performance would be developed.

함정의 평판형 방향타 캐비테이션 침식에 대한 모형 시험 연구 (Study on the Model Tests of Cavitation Erosion Occurring in Navy Ship's Flat-Type Rudder)

  • 백부근;안종우;박영하;;송재열;고윤호
    • 대한조선학회논문집
    • /
    • 제60권1호
    • /
    • pp.31-37
    • /
    • 2023
  • In the present study, a method of performing cavitation erosion test directly on the anodized surface of the rudder model is proposed, not applying ink or paint on its surface. An image processing technique is newly developed to quantitatively evaluate the erosion damages on the rudder model surface after erosion test. The preprocessing saturation image, image smoothing, adaptive hysteresis thresholding and eroded area detection algorithms are in the image processing program. The rudder cavitation erosion tests are conducted in the rudder deflection angle range of 0° to -4°, which is used to maintain a straight course at the highest speed of the targeted navy ship. In the case of the conventional flat-type full-spade rudder currently being used in the target ship, surface erosion can occur on the model rudder surface in the above rudder deflection angle range. The bubble type of cavitation occurs on rudder surface, which is estimated to be the main reason of erosion damage on the rudder surface.

함정용 방향타에서 발생하는 구름(cloud) 캐비테이션의 주파수 특성에 대한 실험적 연구 (An Experimental Study on the Frequency Characteristics of Cloud Cavitation on Naval Ship Rudder)

  • 백부근;안종우;정홍석;설한신;송재열;고윤호
    • 대한조선학회논문집
    • /
    • 제58권3호
    • /
    • pp.167-174
    • /
    • 2021
  • In this study, the amount and frequency characteristics of cloud cavitation formed on a navy ship rudder were investigated through cavitation image processing technique and cavitation noise analysis. A high-speed camera with high time resolution was used to observe the cavitation on a full-spade rudder. The deflection angle range of the full-spade rudder was set to 8 to 15 degrees so that cloud cavitation was generated on the rudder surface. For images taken at 104 fps (frame per second), reference values for detecting cavitation were defined and detected in Red, Green, Blue and Hue, Saturation, Lightness color spaces to quantitatively analyze the amount of cavitation. Intrinsic frequency characteristics of cloud cavitation were detected from the time series data of the amount of cavitation. The frequency characteristics of cloud cavitation obtained by using the image processing technique were found to be the same through the analysis of the noise signal measured by the hydrophone installed on the hull above the rudder, and its peak value was in the frequency band of 30~60Hz.

초대형 컨테이너선박 방향타의 캐비테이션 수치계산 및 검증 (Numerical Calculation and Validation for Rudder Cavitation of a Large Container Ship)

  • 김건도;문일성;김경열;반석호;이창섭
    • 대한조선학회논문집
    • /
    • 제43권5호
    • /
    • pp.568-577
    • /
    • 2006
  • With the increase of ship size and speed, the loading on the propeller is increasing, which in turn increases the rotational speed in the propeller slipstream. The rudder placed in the propeller slip stream is therefore subject to severe cavitation with the increased angle of attack due to the increased rotational induction speed of the propeller. In the present paper the surface panel method, which has been proved useful in predicting the sheet cavitation on the propeller blade, is applied to solve the cavity boundary value problem on the rudder. The problem is then solved numerically by discretizing the rudder and cavity surface elements of the quadrilateral panels with constant strengths of sources and dipoles. The strengths of the singularities are determined satisfying the boundary conditions on the rudder and cavity surfaces. The extent of the cavity, which is unknown a priori, is determined by iterative procedure. Series of numerical experiments are performed increasing the degree of complexity of the rudder geometry and oncoming flows from the simple hydrofoil case to the real rudder in the circumferentially averaged propeller slipstream. Numerical results are presented with experimental results.

선미 부가물 수정에 따른 프로펠러 캐비테이션 성능 향상 연구 (Study of the Propeller Cavitation Performance Improvement Through the Stern Appendage Modification)

  • 안종우;박영하;김건도;백부근;설한신;박일룡
    • 대한조선학회논문집
    • /
    • 제60권1호
    • /
    • pp.1-9
    • /
    • 2023
  • In order to improve the propeller cavitation performance composed of Cavitation Inception Speed (CIS), cavitation extent and pressure fluctuation, it needs to improve the wake distribution that flows into the propeller. The warship propeller cavitation is strongly influenced by the wake created at the V-strut of various appendages. The inflow characteristics of the V-strut were investigated using Computational Fluid Dynamics (CFD) and the twisted angles of the V-strut were aligned with upstream flow. The resistance and self-propulsion tests for the model ship with the existing and modified V-struts were conducted in Towing Tank (TT), and wake distribution, CIS, cavitation observation and pressure fluctuation tests were conducted in Large Cavitation Tunnel (LCT). The propeller behind the modified V-strut showed better cavitation characteristics than that behind the existing V-strut. Another model test was conducted to investigate rudder cavitation performance by the change of the V-strut. The rudder cavitation characteristics were not improved by the change of the operating conditions. On the basis of the present study, it is thought that the stern appendages for better propeller cavitation performance would be developed.

유전자 알고리즘을 이용한 컨테이너선을 위한 침식예방용 최적방향타 단면 설계 (Study on Optimization of Anti-erosion Rudder Section of Large Container Ship by Genetic Algorithm)

  • 김문찬;이언식;변태영
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.403-410
    • /
    • 2008
  • This paper describes the optimization of the rudder section by the genetic algorism based on VLM(Vortex Lattice Method) and panel method. The developed propeller-rudder analysis program has been validated by comparing with experimental data. The research extends to optimize the anti-erosion rudder section of the large container ship. The object function is the amount of pressure at leading edge of rudder which is closely related with erosion phenomena. The optimized rudder has been compared with conventional rudder with NACA 0021 section by analyzing with the developed program. The finally optimized section has low and mild pressure distribution in comparison with the NACA rudder. The experiments is expected to be carried out for the validation of the present optimization and more parametric study of section geometry is also expected to be conducted in the near future.

대형 컨테이너선용 Twist 일체형 타 개발 (Study on Design of a Twisted Full-Spade Rudder for a Large Container Ship by the Genetic Algorithm)

  • 김인환;김문찬;이진희;천장호;정운화
    • 대한조선학회논문집
    • /
    • 제46권5호
    • /
    • pp.479-487
    • /
    • 2009
  • This paper describes the design of a full-spade twisted rudder section by using the genetic algorithm based on VLM(Vortex Lattice Method) and panel method. The developed propeller- rudder analysis program has been validated by comparing with experimental data. The developed code has been used for the design of a twisted full-spade rudder especially for finding out optimum section. The optimization has been firstly carried out by the genetic algorithm. The more detail variation of a rudder section has been also conducted by changing section profile in more detail to confirm the most optimum section profile. The developed new twisted rudder has been compared with existing twisted rudder by cavitation testing in the cavitation tunnel at MOERI. It is concluded that the developed twisted rudder has a lower cavity in comparison with existing twisted rudder. The verification of efficiency gain is expected to be carried out through self-propulsion tests in the near future.

선박 추진시스템 유동 소음원 상대적 기여도 분석 (Investigation on relative contribution of flow noise sources of ship propulsion system)

  • 하준범;구가람;정철웅;설한신;정홍석;정민석
    • 한국음향학회지
    • /
    • 제41권3호
    • /
    • pp.268-277
    • /
    • 2022
  • 본 논문에서는 KVLCC2 선체 축소모형에 설치된 추진시스템의 세부 구성품별 유동 소음원을 분석하였으며, 각각의 소음원이 수중방사소음에 미치는 영향에 대해 정량적으로 분석하였다. 수치 해석 영역은 실험 결과와의 비교를 위하여 선박해양플랜트연구소 대형 캐비테이션 터널의 시험부와 동일하게 설정하였다. 먼저 유동장내 소음원을 정확하게 모사하기 위하여 고정밀 해석기법인 비압축성 다상 Delayed Detached Eddy Simulation 방법을 적용하였고, 유동해석 결과를 기반으로 Ffowcs Williams and Hawkings 적분방정식을 사용하여 수중방사소음을 예측하였으며, 터널 실험결과와의 비교를 통해 해석절차의 유효성을 확인하였다. 추진시스템의 유동 소음원별 영향을 정량적으로 비교하기 위하여 추진기 날개 끝-와류 공동, 날개 표면 그리고 방향타 표면을 소음원 영역으로 선정하였으며, 음압과 파워 스펙트럼 밀도, 음향 파워를 비교하였다. 공동에 의한 홀극 소음원의 기여도가 추진기 날개 및 방향타에 의한 쌍극 소음원에 비해 수중방사소음에 크게 기여하였으며, 추진기 후류의 영향으로 방향타에 의한 기여도가 추진기 보다 더 크게 발생함을 확인하였다.

혼-타의 수평틈새가 캐비테이션에 미치는 영향에 관한 수치적 연구 (A Numerical Study on the Influence of the Horizontal Gap upon the Cavitation Behavior of a Horn Type Rudder)

  • 서대원;이승희;김효철;오정근
    • 대한조선학회논문집
    • /
    • 제47권2호
    • /
    • pp.113-121
    • /
    • 2010
  • Recently, as container ships become larger and faster, rudder cavitations are more frequently observed near the gap between the horn and rudder plates of the ships to cause serious damages to the rudder surface of the ship. The authors already have suggested through a series of model experiments and numerical computations that employment of an appropriate blocking device for gap flow may retard the gap cavitation. For examples, a cam device installed near the outer edges of the vertical gap or a water-injection device combined with a pair of half-round bars installed inside the gap can considerably reduce the gap cavitation. However, it is also found that effective blocking of the flow through the vertical gap results in growth of the cavitation near the horizontal gap instead. In the present study, effectiveness of the simultaneous blocking of the flow through the horizontal and vertical gaps of a horn type rudder in minimizing the damage by gap cavitation is studied. Additional blocking disks are inserted inside the horizontal gaps on the top and bottom of the pintle block and numerical computations are carried out to confirm the combined effect of the blocking devices.