• Title/Summary/Keyword: 방조제 차수

Search Result 5, Processing Time 0.02 seconds

A field-replace case for the cutoff of water on a seawall (방조제 차수를 위한 현장대체공법 사례)

  • Kim, Joon-Seok
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.181-182
    • /
    • 2016
  • 방조제 차수공사를 실시하는 현장 지반의 하부에 철재이물질과 돌망태 와이어 등이 매립되어 있는 것으로 확인된 상황에서 강널말뚝(sheet pile)을 풍화대까지 항타하는 것이 현실적으로 불가능하므로 상부는 철재이물질(돌망태 등)이 없는 심도까지 T-4 및 Vibro Hammer 에 의한 강널말뚝(sheet pile)을 이용하여 차수하고, 철재이물질과 돌망태 와이어 등이 매립되어 있는 것으로 확인된 하부 풍화대까지는 그라우팅에 의한 차수를 시도하는 현장차수방법을 시공하여 성공적으로 차수결과를 얻을 수 있었다.

  • PDF

The Estimation of Seepage Blocking State with the Normalized Hydraulic Head Loss Rate at Each Seepage Segment in Sea Dike Embankment (정규화된 수두손실률에 의한 방조제 구간별 차수상태 평가)

  • Eam, Sung Hoon;Heo, Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.159-167
    • /
    • 2014
  • In this study the process of normalizing hydraulic head loss rate was developed for the purpose of estimation of seepage blocking state at each seepage segment in sea dike embankment. Pore water pressure sensors were installed with some interval along seepage path, then the hydraulic head loss rate at each segment between pore water pressure sensors was calculated, and then the calculated hydraulic head loss rate was normalized based on seepage path length. The comparison of normalized hydraulic head loss rates showed that the cross section of sea dike embankment was homogeneous approximately and the width of cross section was long enough to blocking tide water.

The verification of the application of grouting in the bottom protection work of sea dikes in the field (그라우팅을 통한 방조제 바닥보호공 차수공법 현장 적용성 검증)

  • Lee, So-Yeal;Choi, Sae-Kyung;Jeong, Il-Han
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.29-39
    • /
    • 2010
  • By understanding the construction process of sea dikes and the current state of the thickness and speed of fluid in the bottom layer protection work of final closure gaps, a construction method applicable for the blocking of bottom layer work will be selected. The three construction methods selected will be tested in site through various methods, and the reinforcement of bottom layer protection and impervious effect will be verified. The verification results are as follows: 1) The overall riprap layer were 0.5~1.0m thicker than planned so that the grouting depth and grout input amount increased 2) The applied construction methods permeability of riprap layers were improved from $\alpha{\times}10^{-2}cm/s$ before the construction to $\alpha{\times}10^{-4}cm/s$ after construction. 3) The results of core extraction in order to grossly verify the hardening time and durability allowed the identification of grout injection effect. The amount of filling of the injection was difficult to judge because the slime in many areas made the reading of borehole photography difficult.

  • PDF

The Monitoring on Gradual Change of Seepage Blocking State with the Hydraulic Head Loss Rate Change According to Passage of time in Sea Dike Embankment (수두손실률의 경시변화에 의한 방조제 제체의 점진적인 차수상태 변화 감시)

  • Eam, Sung Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • In this study it was adopted on sea dike monitoring that the safety monitoring with statistical limits which was adapted usually on safety monitoring by measuring pressures, stresses or deformations. And also the hydraulic head loss rate change according to passage of time was calculated for the purpose of safety monitoring. Safety monitoring by setting the statistical limit on the measured pore water pressure graphs need to be supplemented with an additional method of monitoring because the difference between the rise and fall of the tide was irregular. Safety monitoring by the limits set from values predicted by linear regression and standard errors on the hydraulic head loss graph was not affected by irregularity of tide. But if the condition of an embankment is changed gradually and slowly, it will not be detected on the hydraulic head loss graph. The graph of hydraulic head loss rate for every 24 hours vs date showed clearly that the sea water blocking state was getting better or not even though it was changed gradually and slowly.

A Study on Hybrid Grout Material for Reservoir Embankment reinforcement (저수지 제방 보수보강을 위한 하이브리드형 그라우트재 연구)

  • Park, Sung-Yong;Shim, Houng-Gen;Kang, Hee-Jin;Lim, One-Bin;Sami, Ghazali-Flimban;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.21-30
    • /
    • 2017
  • Cement grouting method is generally applied for the purpose of reinforcement of deteriorated reservior. Problems have been raised due to the limit of the injection material. In order to solve these problems, various grout materials have been developed. However, there are many cases in which the grounds are disturbed in actual field. In this study, the physical properties of hybrid grout with high fineness and high viscosity characteristics were analyzed to enable penetration into the ground. Optimum inflation agent was selected and mixed with the grout. The pressure and compaction effect on expansion was examined and its effectiveness was verified. From the result of confirming expansion ratio, uniaxial compressive strength, expansion pressure and compaction effect, the HI-E (2%) sample was analyzed to be excellent in improvement effect by the inflation agent. Hence, hybrid grout can be effectively applied for the impermeable and reinforcement method of deterioration reservoir and tide embankment.